在使用Spring Data Redis的RedisTemplate
时,不同的序列化配置和操作方法会影响数据存储的格式和适用场景。以下是对不同配置和使用场景的详细说明:
一、RedisTemplate的序列化配置方式及使用场景
1. 默认配置 JDK序列化(JdkSerializationRedisSerializer)(不推荐)
@Bean
public RedisTemplate<String, Object> redisTemplate(RedisConnectionFactory factory) {
RedisTemplate<String, Object> template = new RedisTemplate<>();
// 连接工厂
template.setConnectionFactory(factory);
// 默认使用JdkSerializationRedisSerializer序列化key和value
return template;
}
- 特点:将对象序列化为二进制字节流,Redis中存储为二进制数据。
- 适用场景:需要直接存储Java对象且不关注可读性,仅用于Java应用间的数据共享。
- 缺点:数据不可读,跨语言兼容性差,不同JVM版本可能不兼容。
2. Key和Value均使用String序列化(StringRedisSerializer)
@Bean
public RedisTemplate<String, String> stringRedisTemplate(RedisConnectionFactory factory) {
RedisTemplate<String, String> template = new RedisTemplate<>();
template.setConnectionFactory(factory);
template.setKeySerializer(RedisSerializer.string());
template.setValueSerializer(RedisSerializer.string());
template.afterPropertiesSet();
return template;
}
- 特点:所有数据以字符串形式存储,Key和Value均为可读的字符串。
- 适用场景:处理纯文本数据,如简单的键值对缓存,或与其他语言兼容的场景。
- 注意:存储对象时需手动序列化为JSON字符串。
3. Key为String,Value为JSON(Jackson2JsonRedisSerializer)(推荐)
**Jackson2JsonRedisSerializer可以自定序列化和反序列化不需要手动解决**
@Bean
public RedisTemplate<String, Object> jsonRedisTemplate(RedisConnectionFactory factory) {
RedisTemplate<String, Object> template = new RedisTemplate<>();
template.setConnectionFactory(factory);
template.setKeySerializer(RedisSerializer.string());
template.setValueSerializer(new Jackson2JsonRedisSerializer<>(Object.class));
template.afterPropertiesSet();
return template;
}
- 特点:Value以JSON格式存储,Key为字符串,数据可读且兼容性强。
- 适用场景:存储复杂对象(如DTO、POJO),需跨语言读取或需要人工查看数据的场景。
- 扩展:可配置
ObjectMapper
定制JSON序列化规则。
4. Hash结构的序列化配置(推荐)
@Bean
public RedisTemplate<String, Object> hashRedisTemplate(RedisConnectionFactory factory) {
RedisTemplate<String, Object> template = new RedisTemplate<>();
template.setConnectionFactory(factory);
template.setKeySerializer(RedisSerializer.string());
template.setHashKeySerializer(RedisSerializer.string());
template.setHashValueSerializer(new Jackson2JsonRedisSerializer<>(Object.class));
template.afterPropertiesSet();
return template;
}
- 特点:Hash的Field和Value可独立配置序列化方式。
- 适用场景:存储嵌套结构的数据,如用户属性(Hash Key为属性名,Value为JSON对象)。
5. 高性能二进制序列化(如Protostuff)
@Bean
public RedisTemplate<String, byte[]> binaryRedisTemplate(RedisConnectionFactory factory) {
RedisTemplate<String, byte[]> template = new RedisTemplate<>();
template.setConnectionFactory(factory);
template.setKeySerializer(RedisSerializer.string());
template.setValueSerializer(RedisSerializer.byteArray());
template.afterPropertiesSet();
return template;
}
- 特点:手动使用Protostuff等工具将对象序列化为字节数组,再通过
byte[]
存储。 - 适用场景:对性能要求极高,且无需人工查看数据的场景。
推荐配置序列化按照我写得
链接
这篇文章来配置序列化问题
解释说明: 一般来说Redis存储的内容是键值对形式的数据,然后里面的键的形式用字符串形式的也就是说用,然后值的形式用json形式,用 Jackson2JsonRedisSerializer可以序列化和反序列化不需要手动的去解决序列化问题。如果使用GenericJackson2JsonRedisSerializer去配置序列化问题在redis里面存储的时候里面会有一个@class(指定数据类型比如说一个User类型的实体类)占用空间。
Jackson2JsonRedisSerializer jsonSerializer = new Jackson2JsonRedisSerializer<>(Object.class)(推荐)
二、RedisTemplate的数据操作方法及场景
1. 操作不同数据结构
- ValueOperations:操作字符串类型。
ValueOperations<String, String> ops = redisTemplate.opsForValue(); ops.set("key", "value");
- ListOperations:操作列表类型。
ListOperations<String, String> ops = redisTemplate.opsForList(); ops.leftPush("listKey", "item");
- SetOperations/HashOperations/ZSetOperations:分别操作集合、哈希、有序集合。
适用场景:根据数据结构选择对应接口,如缓存列表数据使用ListOperations
。
2. 使用execute执行底层命令
redisTemplate.execute((RedisCallback<Object>) connection -> {
connection.set("key".getBytes(), "value".getBytes());
return null;
});
- 适用场景:需要执行复杂操作或直接访问底层连接时。
3. 事务支持
redisTemplate.execute(new SessionCallback<>() {
@Override
public Object execute(RedisOperations operations) {
operations.multi();
operations.opsForValue().set("key1", "value1");
operations.opsForValue().set("key2", "value2");
return operations.exec();
}
});
- 适用场景:需要保证多个操作的原子性。
三、总结
配置/方法 | 特点 | 适用场景 |
---|---|---|
默认JDK序列化 | 二进制存储,兼容Java对象 | 纯Java应用,无需人工查看数据 |
Key/Value均String | 纯文本存储,兼容性强 | 简单键值对,跨语言场景 |
Key为String,Value为JSON | 可读性好,支持复杂对象 | 存储DTO对象,需人工查看或跨语言读取 |
Hash结构定制序列化 | 灵活配置Hash的Field和Value序列化 | 嵌套数据结构,如用户属性 |
高性能二进制序列化 | 手动控制序列化,性能最优 | 高性能场景,如缓存大量数据 |
数据结构操作方法 | 通过opsForXXX操作不同数据结构 | 根据业务需求选择对应结构,如列表、集合等 |
execute底层操作 | 直接使用Redis连接执行命令 | 复杂操作或需要底层控制时 |
事务支持 | 保证多个操作的原子性 | 需要事务支持的场景 |