Dijkstra算法是一种用于在加权图中找到最短路径的算法,由荷兰计算机科学家艾兹赫尔·戴克斯特拉(Edsger W. Dijkstra)在1956年提出,并在1959年发表。该算法可以找到一个顶点到图中所有其他顶点的最短路径,也可以找到两个顶点之间的最短路径。
Dijkstra算法的基本思想是贪心算法,它按照路径长度的递增次序来逐步确定最短路径。
精妙至极,不算复杂,但是 牛逼!牛逼!还是牛逼!
下面根据离散数学的一道题写出来的实现代码:
#include <stdio.h>
#include <limits.h>
// 定义顶点的最大数量
#define MAX_VERTICES 5
// 定义无穷大的值,用于初始化距离数组
#define INFINITY INT_MAX
// 定义图的结构体
typedef struct {
int numVertices; // 顶点的数量
int distances[MAX_VERTICES][MAX_VERTICES]; // 邻接矩阵,表示图的权重
} Graph;
// 初始化图
void initGraph(Graph *g) {
g->numVertices = MAX_VERTICES;
// 初始化邻接矩阵,0表示没有边,其他值表示边的权重
for (int i = 0; i < g->numVertices; i++) {
for (int j = 0; j < g->numVertices; j++) {
if (i == j) {
g->distances[i][j] = 0; // 自环权重为0
} else {
g->distances[i][j] = INFINITY; // 未连接的顶点权重为无穷大
}
}
}
// 根据题目中的图,设置具体的权重
g->distances[0][1] = 10;
g->distances[0][4] = 100;
g->distances[1][2] = 50;
g->distances[1][3] = 30;
g->distances[2][3] = 20;
g->distances[2][4] = 30;
g->distances[3][4] = 60;
}
// 打印图的邻接矩阵
void printGraph(Graph *g) {
for (int i = 0; i < g->numVertices; i++) {
for (int j = 0; j < g->numVertices; j++) {
if (g->distances[i][j] == INFINITY) {
printf("INF\t");
} else {
printf("%d\t", g->distances[i][j]);
}
}
printf("\n");
}
}
// Dijkstra算法实现
void dijkstra(Graph *g, int startVertex) {
int dist[MAX_VERTICES]; // 存储从起点到每个顶点的最短距离
int visited[MAX_VERTICES] = {0}; // 标记顶点是否已经访问过
// 初始化距离数组
for (int i = 0; i < g->numVertices; i++) {
dist[i] = g->distances[startVertex][i];
}
dist[startVertex] = 0; // 起点到自己的距离为0
// 对每个顶点执行Dijkstra算法
for (int i = 0; i < g->numVertices - 1; i++) {
// 找到未访问的顶点中距离最小的顶点
int minDistance = INFINITY;
int minIndex = -1;
for (int j = 0; j < g->numVertices; j++) {
if (!visited[j] && dist[j] < minDistance) {
minDistance = dist[j];
minIndex = j;
}
}
// 标记这个顶点为已访问
visited[minIndex] = 1;
// 更新相邻顶点的距离
for (int j = 0; j < g->numVertices; j++) {
if (!visited[j] && g->distances[minIndex][j] != INFINITY &&
dist[minIndex] + g->distances[minIndex][j] < dist[j]) {
dist[j] = dist[minIndex] + g->distances[minIndex][j];
}
}
}
// 打印从起点到每个顶点的最短距离
printf("从顶点%d到其他顶点的最短距离:\n", startVertex + 1);
for (int i = 0; i < g->numVertices; i++) {
printf("顶点%d: %d\n", i + 1, dist[i]);
}
}
int main() {
Graph g;
initGraph(&g); // 初始化图
printGraph(&g); // 打印图的邻接矩阵
dijkstra(&g, 0); // 执行Dijkstra算法,从顶点1开始
return 0;
}
初始化:
void initGraph(Graph *g) {
g->numVertices = MAX_VERTICES;
// 初始化邻接矩阵,0表示没有边,其他值表示边的权重
for (int i = 0; i < g->numVertices; i++) {
for (int j = 0; j < g->numVertices; j++) {
if (i == j) {
g->distances[i][j] = 0; // 自环权重为0
} else {
g->distances[i][j] = INFINITY; // 未连接的顶点权重为无穷大
}
}
}
// 根据题目中的图,设置具体的权重
g->distances[0][1] = 10;
g->distances[0][4] = 100;
g->distances[1][2] = 50;
g->distances[1][3] = 30;
g->distances[2][3] = 20;
g->distances[2][4] = 30;
g->distances[3][4] = 60;
}
先打印原型:
void printGraph(Graph *g) {
for (int i = 0; i < g->numVertices; i++) {
for (int j = 0; j < g->numVertices; j++) {
if (g->distances[i][j] == INFINITY) {
printf("INF\t");
} else {
printf("%d\t", g->distances[i][j]);
}
}
printf("\n");
}
}
开始操作:
void dijkstra(Graph *g, int startVertex) {
int dist[MAX_VERTICES]; // 存储从起点到每个顶点的最短距离
int visited[MAX_VERTICES] = {0}; // 标记顶点是否已经访问过
// 初始化距离数组
for (int i = 0; i < g->numVertices; i++) {
dist[i] = g->distances[startVertex][i];
}
dist[startVertex] = 0; // 起点到自己的距离为0
// 对每个顶点执行Dijkstra算法
for (int i = 0; i < g->numVertices - 1; i++) {
// 找到未访问的顶点中距离最小的顶点
int minDistance = INFINITY;
int minIndex = -1;
for (int j = 0; j < g->numVertices; j++) {
if (!visited[j] && dist[j] < minDistance) {
minDistance = dist[j];
minIndex = j;
}
}
// 标记这个顶点为已访问
visited[minIndex] = 1;
// 更新相邻顶点的距离
for (int j = 0; j < g->numVertices; j++) {
if (!visited[j] && g->distances[minIndex][j] != INFINITY &&
dist[minIndex] + g->distances[minIndex][j] < dist[j]) {
dist[j] = dist[minIndex] + g->distances[minIndex][j];
}
}
}
// 打印从起点到每个顶点的最短距离
printf("从顶点%d到其他顶点的最短距离:\n", startVertex + 1);
for (int i = 0; i < g->numVertices; i++) {
printf("顶点%d: %d\n", i + 1, dist[i]);
}
}