- 博客(18)
- 收藏
- 关注
翻译 TransR/CTransR论文:学习实体和关系嵌入的知识图谱补全
摘要:知识图谱补全以执行实体间的链接预测为目标。本文,我们考虑知识图谱嵌入方法。近年来,一些模型像TransE和TransH通过把关系作为从头实体到尾实体的翻译来建立实体和关系嵌入。我们注意到这些模型仅仅简单地假设实体和关处于相同的语义空间。事实上,一个实体是多种属性的综合体,不同关系关注实体的不同属性,仅仅在同一个空间下对它们进行建模是不够的。本文,我们提出了TransR,分别在实体空间和关
2016-04-18 09:59:25 21219
翻译 Train_TransE代码注释
#include#include#include#include#include#include#include#include#includeusing namespace std;#define pi 3.1415926535897932384626433832795bool L1_flag=1;//normal distributiondouble rand(double min, doub
2016-04-16 11:29:25 6468 7
翻译 TransE论文剩余部分
4.3链接预测表3:链接预测结果。不同方法的性能。总体结果 表3显示了所有数据集所有方法的比较。与预期结果一致,经过过滤设置的结果具有较低的平均排名和较高的hits@10,相信在链接预测方面对各种方法有一个清晰地性能评估。然而,raw和filtered的趋势是一样的。我们的方法TransE在所有度量上面通常很大程度上优于所有进行比较的方法,并且取得了一些绝对好的性能例如WN
2016-04-15 16:57:05 9972 1
翻译 TransE论文第4节:实验
4实验TransE的实验数据是从Wordnet和Freebase中抽取的(它们的统计分布已经在表2中给出),并以各种各样的标准和扩展到相对较大的数据集上与文献中几个已经证明是现在最好的几个方法比较。4.1数据集Wordnet 这个知识库用于产生直觉上可用的字典和辞典,并且支持自动文本分析。它的实体对应着词义,关系定义它们之间的词汇关系。我们使用了文献[2]中使用的数据版本,我们在下面表
2016-04-15 07:10:37 7174
翻译 TransE论文第2节:翻译模型
给定一个由三元组(h, l, t)组成的训练集S,其中h,t属于E,关系属于L,我们的模型学习实体和关系的向量嵌入。嵌入的取值属于(k是模型的一个参数),用相同的大写字母表示。
2016-04-13 06:56:01 5599
翻译 TransE论文:多元关系数据嵌入
摘要: 考虑多元关系数据得实体和关系在低维向量空间的嵌入问题。我们的目标是提出一个权威的模型,该模型比较容易训练,包含一组简化了的参数,并且能够扩展到非常大的数据库。因此,我们提出了TransE,一个将关系作为低维空间实体嵌入的翻译的方法。尽管它很简单,但是这种假设被证明是强大的,因为大量的实验表明在两个知识库连接预测方面,TransE明显优于目前最新的方法。除此之外,它能够成功
2016-04-12 08:02:37 7568
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人