论文翻译
fffnull
喜欢简单,喜欢自由,不喜欢复杂,不喜欢标准,blabla......
展开
-
KR-EAR论文
翻译 2016-05-23 10:49:06 · 2071 阅读 · 1 评论 -
TransH论文:Experiments-Link prediction
翻译 2016-05-10 08:05:08 · 4918 阅读 · 0 评论 -
TransH论文:Related work
翻译 2016-05-08 22:11:26 · 4773 阅读 · 1 评论 -
TransH论文(通过翻译将知识图谱嵌入到超平面):Abstract & Introduction
翻译 2016-05-07 07:18:25 · 4012 阅读 · 0 评论 -
DKRL论文:实体描述的知识图谱的表示学习
翻译 2016-05-31 08:46:40 · 4628 阅读 · 0 评论 -
TransH论文:剩余部分
翻译 2016-05-10 19:00:43 · 4997 阅读 · 0 评论 -
TransE论文:多元关系数据嵌入
摘要: 考虑多元关系数据得实体和关系在低维向量空间的嵌入问题。我们的目标是提出一个权威的模型,该模型比较容易训练,包含一组简化了的参数,并且能够扩展到非常大的数据库。因此,我们提出了TransE,一个将关系作为低维空间实体嵌入的翻译的方法。尽管它很简单,但是这种假设被证明是强大的,因为大量的实验表明在两个知识库连接预测方面,TransE明显优于目前最新的方法。除此之外,它能够成功翻译 2016-04-12 08:02:37 · 7575 阅读 · 0 评论 -
TransE论文第3节:相关工作
翻译 2016-04-14 11:50:09 · 3179 阅读 · 1 评论 -
TransE论文第2节:翻译模型
给定一个由三元组(h, l, t)组成的训练集S,其中h,t属于E,关系属于L,我们的模型学习实体和关系的向量嵌入。嵌入的取值属于(k是模型的一个参数),用相同的大写字母表示。翻译 2016-04-13 06:56:01 · 5600 阅读 · 0 评论 -
TransE论文第4节:实验
4实验TransE的实验数据是从Wordnet和Freebase中抽取的(它们的统计分布已经在表2中给出),并以各种各样的标准和扩展到相对较大的数据集上与文献中几个已经证明是现在最好的几个方法比较。4.1数据集Wordnet 这个知识库用于产生直觉上可用的字典和辞典,并且支持自动文本分析。它的实体对应着词义,关系定义它们之间的词汇关系。我们使用了文献[2]中使用的数据版本,我们在下面表翻译 2016-04-15 07:10:37 · 7179 阅读 · 0 评论 -
TransE论文剩余部分
4.3链接预测表3:链接预测结果。不同方法的性能。总体结果 表3显示了所有数据集所有方法的比较。与预期结果一致,经过过滤设置的结果具有较低的平均排名和较高的hits@10,相信在链接预测方面对各种方法有一个清晰地性能评估。然而,raw和filtered的趋势是一样的。我们的方法TransE在所有度量上面通常很大程度上优于所有进行比较的方法,并且取得了一些绝对好的性能例如WN翻译 2016-04-15 16:57:05 · 9981 阅读 · 1 评论 -
TransR/CTransR论文:学习实体和关系嵌入的知识图谱补全
摘要:知识图谱补全以执行实体间的链接预测为目标。本文,我们考虑知识图谱嵌入方法。近年来,一些模型像TransE和TransH通过把关系作为从头实体到尾实体的翻译来建立实体和关系嵌入。我们注意到这些模型仅仅简单地假设实体和关处于相同的语义空间。事实上,一个实体是多种属性的综合体,不同关系关注实体的不同属性,仅仅在同一个空间下对它们进行建模是不够的。本文,我们提出了TransR,分别在实体空间和关翻译 2016-04-18 09:59:25 · 21227 阅读 · 0 评论 -
TransR/CTransR论文:相关工作
翻译 2016-04-19 22:17:21 · 3516 阅读 · 0 评论 -
TransR/CTransR论文:我们的方法
翻译 2016-04-20 10:08:03 · 4657 阅读 · 0 评论 -
TransR/CTransR论文:链接预测
翻译 2016-04-20 22:01:45 · 5305 阅读 · 0 评论 -
TransR/CTransR论文剩余部分:元组分类,文本关系抽取,结论
翻译 2016-04-21 15:29:10 · 3092 阅读 · 0 评论 -
TKRL论文:具有层次类型的知识图谱表示学习
翻译 2016-06-05 09:50:52 · 4229 阅读 · 1 评论