数学建模学习-演化博弈论(Evolutionary Game Theory)教程(46)

数学建模学习-演化博弈论(Evolutionary Game Theory)教程(46)

写在最前

注意本文的相关代码及例子为同学们提供参考,借鉴相关结构,在这里举一些通俗易懂的例子,方便同学们根据实际情况修改代码,很多同学私信反映能否添加一些可视化,这里每篇教程都尽可能增加一些可视化方便同学理解,但具体使用时,同学们要根据实际情况选择是否在论文中添加可视化图片。

系列教程计划持续更新,同学们可以免费订阅专栏,内容充足后专栏可能付费,提前订阅的同学可以免费阅读,同时相关代码获取可以关注博主评论或私信。

一、算法简介

演化博弈论(Evolutionary Game Theory,EGT)是将博弈论与动态演化过程相结合的理论框架。与传统博弈论不同,演化博弈论关注的是群体中不同策略的分布如何随时间演化,而不是寻找纳什均衡。这种方法特别适合研究生物进化、社会行为演化、经济系统动态等问题。

1.1 核心概念

  1. 复制者动态(Replicator Dynamics):描述策略在群体中比例变化的微分方程
  2. 演化稳定策略(ESS):一旦被群体采用就不会被其他策略入侵的策略
  3. 适应度(Fitness):策略在当前环境中的表现好坏程度
  4. 收益矩阵(Payoff Matrix):描述不同策略之间相互作用的收益

1.2 基本原理

演化博弈论的基本思想是:

  • 策略的成功会导致其在群体中的比例增加
  • 策略的失败会导致其在群体中的比例减少
  • 群体会逐渐演化到一个稳定状态

二、算法特点

2.1 优点

  1. 能够模拟群体行为的动态演化过程
  2. 不需要假设参与者完全理性
  3. 可以研究策略的长期稳定性
  4. 适用于分析复杂的社会和生物系统

2.2 缺点

  1. 模型可能过于简化实际情况
  2. 计算复杂度随策略数量增加而增加
  3. 参数选择可能影响结果的稳定性

三、代码实现

3.1 环境准备

首先需要安装必要的Python库:

# requirements.txt
numpy>=1.21.0
matplotlib>=3.4.0
scipy>=1.7.0

3.2 核心代码实现

def replicator_dynamics(x, t, a, b, c, d):
    """
    复制者动态方程
    x: 策略A的比例
    a, b, c, d: 收益矩阵参数
    """
    fitness_a = x * a + (1 - x) * b  # 策略A的适应度
    fitness_b = x * c + (1 - x) * d  # 策略B的适应度
    avg_fitness = x * fitness_a + 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值