数学建模学习-演化博弈论(Evolutionary Game Theory)教程(46)
目录
写在最前
注意本文的相关代码及例子为同学们提供参考,借鉴相关结构,在这里举一些通俗易懂的例子,方便同学们根据实际情况修改代码,很多同学私信反映能否添加一些可视化,这里每篇教程都尽可能增加一些可视化方便同学理解,但具体使用时,同学们要根据实际情况选择是否在论文中添加可视化图片。
系列教程计划持续更新,同学们可以免费订阅专栏,内容充足后专栏可能付费,提前订阅的同学可以免费阅读,同时相关代码获取可以关注博主评论或私信。
一、算法简介
演化博弈论(Evolutionary Game Theory,EGT)是将博弈论与动态演化过程相结合的理论框架。与传统博弈论不同,演化博弈论关注的是群体中不同策略的分布如何随时间演化,而不是寻找纳什均衡。这种方法特别适合研究生物进化、社会行为演化、经济系统动态等问题。
1.1 核心概念
- 复制者动态(Replicator Dynamics):描述策略在群体中比例变化的微分方程
- 演化稳定策略(ESS):一旦被群体采用就不会被其他策略入侵的策略
- 适应度(Fitness):策略在当前环境中的表现好坏程度
- 收益矩阵(Payoff Matrix):描述不同策略之间相互作用的收益
1.2 基本原理
演化博弈论的基本思想是:
- 策略的成功会导致其在群体中的比例增加
- 策略的失败会导致其在群体中的比例减少
- 群体会逐渐演化到一个稳定状态
二、算法特点
2.1 优点
- 能够模拟群体行为的动态演化过程
- 不需要假设参与者完全理性
- 可以研究策略的长期稳定性
- 适用于分析复杂的社会和生物系统
2.2 缺点
- 模型可能过于简化实际情况
- 计算复杂度随策略数量增加而增加
- 参数选择可能影响结果的稳定性
三、代码实现
3.1 环境准备
首先需要安装必要的Python库:
# requirements.txt
numpy>=1.21.0
matplotlib>=3.4.0
scipy>=1.7.0
3.2 核心代码实现
def replicator_dynamics(x, t, a, b, c, d):
"""
复制者动态方程
x: 策略A的比例
a, b, c, d: 收益矩阵参数
"""
fitness_a = x * a + (1 - x) * b # 策略A的适应度
fitness_b = x * c + (1 - x) * d # 策略B的适应度
avg_fitness = x * fitness_a +