Chapter 7 Evolutionary Game Theory
1. Fitness as a Result of Interaction
Evolutionary game theory进化博弈论
结合进化思想的博弈游戏与之前的区别在于,决策不是由选择决定的,而是由基因gene
决定,所以需要考虑在更长的时间尺度上的变化,反馈的payoff
也是由种群适应度来表示fitness
。
fitness
:类比前面的payoff
gene
:类比前面的可选策略。
甲壳虫例子:由于天生基因决定出现了两种甲虫——大甲虫和小甲虫。甲虫互相争夺食物,当相同大小的甲虫竞争会获得相同的食物份额,当一只大甲虫与一只小甲虫竞争时,大甲虫会得到大部分的食物。当两个大甲虫相遇时,由于竞争必须消耗额外的能量,所以不能获得全部fitness。
2. Evolutionarily Stable Strategies(ESS)
Evolutionarily Stable Strategies定义
一种由基因决定的策略,一旦在种群中流行,它往往会持续存在。如果当整个种群使用该策略时,任何使用不同策略的最终会在多代人中消亡,我们说一个给定的策略是进化Evolutionarily Stable的。
ESS在甲虫种群的例子
对小甲虫的种群来说:
假设存在极小值$\varepsilon
在
种
群
发
生
突
变
得
到
大
甲
虫
,
则
有
1
−
在种群发生突变得到大甲虫,则有1-
在种群发生突变得到大甲虫,则有1−\varepsilon $得到小甲虫。那么小甲虫的预期payoff为:
5
(
1
−
ε
)
+
1
⋅
ε
=
5
−
4
ε
5(1-\varepsilon )+1 \cdot \varepsilon =5-4 \varepsilon
5(1−ε)+1⋅ε=5−4ε
大甲虫的预期payoff为:
8
(
1
−
ε
)
+
3
⋅
ε
=
8
−
5
ε
8(1-\varepsilon )+3 \cdot \varepsilon =8-5 \varepsilon
8(1−ε)+3⋅ε=8−5ε
对于足够小的$\varepsilon $,大甲虫的预期适应度超过了小甲虫的预期适应度。因此,小甲虫种群并不是进化稳定的。
对大甲虫的种群来说:
假设存在极小值$\varepsilon
在
种
群
发
生
突
变
得
到
小
甲
虫
,
则
有
1
−
在种群发生突变得到小甲虫,则有1-
在种群发生突变得到小甲虫,则有1−\varepsilon $得到大甲虫。那么小甲虫的预期payoff为:
(
1
−
ε
)
+
5
⋅
ε
=
1
+
4
ε
(1-\varepsilon)+5 \cdot \varepsilon=1+4 \varepsilon
(1−ε)+5⋅ε=1+4ε
大甲虫payoff:
3
(
1
−
ε
)
+
8
⋅
ε
=
3
+
5
ε
3(1-\varepsilon)+8 \cdot \varepsilon=3+5 \varepsilon
3(1−ε)+8⋅ε=3+5ε
小甲虫的预期payoff为:
对于足够小的$\varepsilon $,大甲虫的预期适应度超过了小甲虫的预期适应度,因此大甲虫种群在进化上是稳定的。
3. A General Description of Evolutionarily Stable Strategies
开始讨论更加一般化的双人对称进化博弈。
对S种群来说,存在变异体T物种的入侵,同样假设存在极小值$\varepsilon , 种 群 的 ,种群的 ,种群的\varepsilon 部 分 变 异 成 为 使 用 T 物 种 , 种 群 的 1 − 部分变异成为使用T物种,种群的1− 部分变异成为使用T物种,种群的1−\varepsilon $部分仍然为S物种。
S的payoff:
a
(
1
−
ε
)
+
b
ε
a(1-\varepsilon)+b \varepsilon
a(1−ε)+bε
T的payoff:
c
(
1
−
ε
)
+
d
ε
c(1-\varepsilon)+d \varepsilon
c(1−ε)+dε
因此,如果对于
ε
\varepsilon
ε>0的所有足够小的值,则S是进化稳定的条件是:
a
(
1
−
ε
)
+
b
ε
>
c
(
1
−
ε
)
+
d
ε
a(1-\varepsilon)+b \varepsilon>c(1-\varepsilon)+d \varepsilon
a(1−ε)+bε>c(1−ε)+dε
所以得到需要满足的条件是:
- a>c:这种情况说明S遇到同类S得到的收益需要大于入侵变异物种T遇到S的收益,同时S也是对S种群的best response。直观来说,变异物种T对S的入侵影响小于S对S内部维护种群稳定的影响。
- a=c and b > d:如果S和T对S的反应同样好,说明T也是弱最优策略。直观来说,变异物种T在种群中对S的影响和S同类间影响相同,同时需要S与T的种间斗争影响小于T与T种内斗争的影响,这也直接导致变异物种T在种内难以生存以至消亡。
4. Relationship Between Evolutionary and Nash Equilibria
结论:ESS一定是纳什均衡,纳什均衡不一定是ESS。
对上面的例子,纳什均衡(NE)的条件是:
a
≥
c
a \geq c
a≥c
进化稳定策略(ESS)的条件是:
(i)
a
>
c
, or (ii)
a
=
c
and
b
>
d
,
\text { (i) } a>c \text {, or (ii) } a=c \text { and } b>d \text {, }
(i) a>c, or (ii) a=c and b>d,
所以存在a=c,但b<d的情况使得(S,S)不是进化稳定的。
同理对严格纳什均衡(Strict NE)的条件:
a
>
c
a \gt c
a>c
最终结论:
S
t
r
i
c
t
N
E
⊆
E
S
S
⊆
N
E
Strict \ NE \subseteq ESS \subseteq NE
Strict NE⊆ESS⊆NE
5. Evolutionarily Stable Mixed Strategies
现在考虑如何处理没有策略是进化稳定的情况。用混合策略来描述进化稳定性,实际扩大了可能的策略集,每个策略相比纯策略是对应一个特定概率的策略。
进化稳定混合策略可以从两个角度理解:
-
可能是每个人都天生会玩纯策略,但一部分人玩一种策略,而其余的人玩另一种策略。
-
可能是每个人都在玩一种特定的混合策略,他们的基因指定他们会在特定概率的特定选项中随机选择。
对双人对称博弈来说:
动物有p概率成为S,有1-p概率成为T,q同理。所以对一个动物的期望收益为:
V
(
p
,
q
)
=
p
q
a
+
p
(
1
−
q
)
b
+
(
1
−
p
)
q
c
+
(
1
−
p
)
(
1
−
q
)
d
V(p, q)=p q a+p(1-q) b+(1-p) q c+(1-p)(1-q) d
V(p,q)=pqa+p(1−q)b+(1−p)qc+(1−p)(1−q)d
Evolutionarily Stable Mixed Strategies定义:
对混合策略来说,存在一种均衡状态使得原物种和入侵者能够共同生存。在这种均衡状态下,原物种和入侵者分别以某种种群比率不断繁衍遗传,从而达到混合ESS。
特别的是,S是一个进化稳定的纯策略,但在p=1的新定义下,它也不一定是一个进化稳定的混合策略。
混合纳什均衡的条件:
(
1
−
x
)
V
(
p
,
p
)
+
x
V
(
p
,
q
)
≥
(
1
−
x
)
V
(
q
,
p
)
+
x
V
(
q
,
q
)
(1-x) V(p, p)+x V(p, q)\geq(1-x) V(q, p)+x V(q, q)
(1−x)V(p,p)+xV(p,q)≥(1−x)V(q,p)+xV(q,q)
混合ESS的条件:
(
1
−
x
)
V
(
p
,
p
)
+
x
V
(
p
,
q
)
>
(
1
−
x
)
V
(
q
,
p
)
+
x
V
(
q
,
q
)
且
q
≠
p
(1-x) V(p, p)+x V(p, q)>(1-x) V(q, p)+x V(q, q) 且 q \neq p
(1−x)V(p,p)+xV(p,q)>(1−x)V(q,p)+xV(q,q)且q=p