YOLO系列最全指南!附赠YOLOv8训练技巧+工业级部署方案(限时领代码)

目录

目标检测基础

1.1 基本概念

1.2 发展历史

YOLO v1

YOLOv5

YOLOv8

YOLOv9

YOLOv10

YOLOv11 发展与创新

1. 架构优化

2. 特征提取能力增强

3. 效率和速度优化

4. 检测头改进

1.3 目标检测四大任务

1.4 目标检测算法的分类

(1)One-Stage(单阶段)目标检测算法

(2)Two-Stage(双阶段)目标检测算法

性能对比与趋势

二、环境配置

2.1 下载YOLOv8项目,Anaconda和PyCharm

2.2 安装Anaconda和PyCharm

2.3 创建虚拟环境

2.4 租用GPU,搭建环境

三、目标检测流程

3.1 训练

3.2 测试

四、数据集

4.1 简介

4.2 数据集标注

4.3 VOC数据集转换

五、模型评价指标


目标检测基础

1.1 基本概念

目标检测是计算机视觉领域的一个重要任务,目的是在图像或视频中找到并标记出特定的物体。与图像分类不同,目标检测不仅要识别出物体属于哪一类,还需要确定物体的位置。由于物体的外观、形状和角度各不相同,且图像中的光线、遮挡等因素也会影响结果,因此目标检测一直是计算机视觉中非常具有挑战性的问题。

1.2 发展历史

目标检测技术的历史可以追溯到20世纪80年代。最初的目标检测方法主要依赖于人工设计的特征提取算法,比如基于边缘、颜色、纹理等简单特征,再结合模板匹配或者统计模型进行检测。但这些方法的缺点是处理复杂场景时效果不好

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值