
深度学习教学-附源码
文章平均质量分 87
本专栏提供系统化的深度学习教学,涵盖环境配置、数据标注、算法复现及优化。手把手讲解PyTorch、TensorFlow和PaddlePaddle环境搭建,详解标签设计与数据处理技巧。深入对比主流模型,包括人脸识别、语义分割(STDC、DeepLabv3+)、关键点检等,并结合火焰识别、健康监测等实战
博导ai君
糟糕的人生还是糟糕的人?
展开
-
OpenCV 数字识别程序解析
摄像头捕获 → 2. 灰度化+二值化 → 3. 轮廓检测 → 4. 区域筛选 → 5. 模板匹配 → 6. 输出结果。功能:将输入图像与 5 个模板图像(1.png ~ 5.png)逐一比较,返回最匹配的数字(1~5)。用途:在模板匹配中衡量两图像的差异(差异越小,匹配度越高)。差异计算:通过 absdiff 计算像素差异,累加差异值。输出结果:打印识别到的数字和匹配差异值(差异越小越匹配)。功能:检测图像中的轮廓,筛选出可能是数字的区域。功能:计算图像所有像素值的总和。原创 2025-04-11 16:05:26 · 276 阅读 · 0 评论 -
深度学习环境搭建(windows)pytorch、cuda、cudnn等 python opencv源码(史上最全)
windows环境安装vscode、pytorch、cuda、cudnn、科靴上w ang完整教程。包含服务器、加速下载pytorch、python。原创 2025-04-11 17:27:17 · 834 阅读 · 1 评论 -
小节:MNIST理解第一二章 python opencv源码(史上最全)
下面是几个手写的数字,像素非常低。人脑可以很轻易的看出来这些数字是3、7、6,但让计算机去识别出手写的数字和文字,却是一个难题,因为电脑的世界只是二进制的。下面是几个手写的数字,像素非常低。人脑可以很轻易的看出来这些数字是3、7、6,但让计算机去识别出手写的数字和文字,却是一个难题,因为电脑的世界只是二进制的。更鬼扯的事情是,上图中的两个数字3,投射到人的视网膜中之后,可以说是非常不一样,但人脑就是可以认识到,这两个手写的数字都是3。但是电脑做不到。图源。让机器认识一个手写的0~9的数字,是不是很难?原创 2025-04-14 10:50:25 · 708 阅读 · 0 评论 -
深度学习-损失函数 python opencv源码(史上最全)
损失函数又叫误差函数、成本函数、代价函数,用来衡量算法的运行情况,用符号L表示。假设我们的回归函数是:y = wx+b,那么损失函数的作用就是用来获取误差,然后来更新w和b,从而使预测值y更贴近真实值。也就是训练过程就是让这个损失越来越小的过程(最小化损失函数)。作用:1衡量模型性能 2优化参数(w和b)原创 2025-04-12 14:12:13 · 763 阅读 · 0 评论 -
ai基本词汇,深度学习基础python opencv(史上最全)
AI基础知识:预训练是机器学习模型训练的初始阶段,模型从大规模数据中进行一般化学习,模型不需要完全理解所有任务的细节,而是通过在大规模数据上的训练来学习常见的模式。在 RAG 中,模型在生成文本的过程中,不仅依赖于已有的知识,还能够从外部检索到相关的信息,并将这些信息融入生成过程,提高回答的准确性和相关性。AIGC 是近年来发展迅速的领域,AI 能够根据用户输入的信息,自动生成创意内容。原创 2025-04-12 11:33:23 · 554 阅读 · 0 评论 -
人工智能概述 python opencv(史上最全)
有监督学习是机器学习中一种常见的学习范式,其基本思想是利用带有标签的训练数据来训练模型,从而使其能够从输入数据中学习到输入与输出之间的映射关系,然后可以利用这个映射关系对新的未标签数据进行预测。是不是很像人通过刷题的学习过程?用带了标准答案的习题集去刷题,如果做错了就根据错误的原因反思改进。当新的题目到来时,便可根据过去刷题的经验来去写新的题目。有监督学习的训练集要包括输入(特征)和输出(目标),其中,输出是人工标注的。原创 2025-04-12 11:42:25 · 1125 阅读 · 0 评论 -
深度学习-卷积层(代码+理论)python opencv源码(史上最全)
卷积(Convolution)是深度学习中最重要的技术之一,其历史可以追溯到上世纪八十年代。尽管这项技术已有近四十年的历史,但时至今日,它依然是各类神经网络模型的核心组成部分。那么,究竟什么是卷积呢?许多初学者第一次接触“卷积”这个概念时,往往会联想到数学中的卷积定义——即“卷积是通过两个函数f和g生成第三个函数的数学算子,表征函数f与g经过翻转和平移后的重叠部分函数值乘积对重叠长度的积分”。然而,这样的数学解释虽然严谨,却容易让人望而生畏。原创 2025-04-14 19:26:41 · 781 阅读 · 0 评论 -
人脸检测-人脸关键点-人脸识别-人脸打卡-haar-hog-cnn-ssd-mtcnn-lbph-eigenface-resnet python opencv源码(史上最全)
CNN(Convolutional Neural Network,卷积神经网络)是一种深度学习模型,广泛应用于计算机视觉任务,包括人脸检测、识别和分类。相比于传统方法(如Haar、HOG),CNN能够自动学习图像的多层次特征(如边缘、纹理、形状等),具有更高的检测精度和鲁棒性。CNN人脸检测的优势:高精度:能够检测不同角度、光照、遮挡的人脸。端到端训练:无需手动设计特征提取器(如Haar、HOG)。适应性强:适用于复杂背景、多人脸场景。原创 2025-04-16 22:38:16 · 1200 阅读 · 0 评论 -
毛笔书体检测-hog+svm python opencv源码
链接:https://pan.baidu.com/s/1l-bw8zR9psv1HycmMqQBqQ?pwd=2ibp提取码:2ibp--来自百度网盘超级会员V2的分享。原创 2025-04-16 22:45:19 · 448 阅读 · 0 评论 -
用前向传播、梯度下降、反向传播理解MNIST(全网最详细教程)
在神经网络的设计中,我们往往希望输出层输出的是一个概率分布函数,每个值都为正,而总和为1(总和为1一般选择softmax,因为softmax的输出就是0-1的区间);然后对于值最大的一个神经元对应的内容(在上面的例子中是数字),就是我们的输出。传统的机器学习算法中,整个训练集中的所有样本都会被用来计算模型参数的梯度,并根据梯度来更新模型参数,因此N的值就是训练集的大小。传统的机器学习算法中,整个训练集中的所有样本都会被用来计算模型参数的梯度,并根据梯度来更新模型参数,因此的值就是训练集的大小。原创 2025-04-20 16:07:40 · 864 阅读 · 0 评论 -
部署大模型
这是一篇关于部署大模型原创 2025-04-20 16:37:39 · 344 阅读 · 0 评论 -
deeplab语义分割训练自定数据集
链接:https://pan.baidu.com/s/1KkkM1rLfyiMPtYLycpnxmg?pwd=j2rd提取码:j2rd--来自百度网盘超级会员V2的分享采用数据集: https://aistudio.baidu.com/datasetdetail/130647采用代码:本文会讲解两种方法:一种是使用开源数据集(不是deeplab支持的数据集)完成在deeplab上训练,另一种是通过标注自定义数据集来完成训练。原创 2025-04-23 21:42:37 · 769 阅读 · 0 评论 -
YOLOv8 涨点新方案:SlideLoss & FocalLoss 优化,小目标检测效果炸裂!
(如小物体、稀有类别)赋予更高权重,让模型更关注这些“难啃的骨头”。:数据中某些类别(如“罕见疾病细胞”)样本太少,模型容易忽略它们。:YOLOv8对小物体(如远处的人、小尺寸的车辆)容易分类错误。的数据时,容易出现漏检或误检。,让模型对小物体的分类更敏感,同时不影响大物体的检测。,能显著提升检测精度,尤其是对小物体和难分类样本!:小目标检测精度提升,且不会拖累大物体的性能。YOLOv8虽然是强大的目标检测模型,但在处理。:稀有类别的检测率显著提高!:FocalLoss对。原创 2025-04-24 22:47:28 · 453 阅读 · 0 评论 -
YOLO系列最全指南!附赠YOLOv8训练技巧+工业级部署方案(限时领代码)
数据集是必不可少的部分,数据集的优劣直接影响训练效果。一般来说,一个完整的数据集应该包括训练集、测试集和验证集。通常,数据集会被划分为训练集和测试集,比如将数据集的70%用作训练集,30%用作测试集。在进行训练时,可以使用交叉验证的方法将训练集再次划分为训练子集和验证子集,用于模型的训练和验证。训练集是用于模型的训练的数据集。在训练过程中,模型使用训练集中的样本进行学习和参数调整,通过不断迭代优化模型的参数,使模型能够更好地拟合训练集中的数据。测试集是用于模型的评估的数据集。原创 2025-04-24 23:38:15 · 912 阅读 · 0 评论 -
人脸识别系统开发指南(基于ORL数据集)
人脸识别系统开发指南(基于ORL数据集)原创 2025-04-25 00:17:25 · 848 阅读 · 0 评论 -
深入解析YOLO v1:实时目标检测的开山之作
这篇博客将主要介绍 YOLO v1 算法(CVPR 2016 的论文),它是一种目前非常流行的目标检测(Object Detection)算法,以速度快、结构简单著称。相比于其他目标检测算法,如 Faster R-CNN、SSD 等,YOLO 在实时性上具有明显优势。相信这些算法大家并不陌生,后续有机会会对它们进行详细解读。需要特别说明的是,本文介绍的算法是 YOLO 的第一个版本(YOLO v1)。随着算法的不断发展,目前在 YOLO 的官方网站上已经发布了 YOLO v2 的实现版本。原创 2025-04-26 00:11:53 · 844 阅读 · 0 评论 -
小白也能懂!一步步教你用FPGA加速YOLO目标检测(入门篇)
安装到 PYNQ 开发板中。该库为 PYNQ 平台提供了对量化神经网络(如 YOLO)的硬件加速支持。确保你的电脑已连接到外网,如 WiFi 或热点(手机热点理论上也可用,未实测)。当你看到安装成功的提示后,打开 Jupyter Notebook,你会发现在。趁这个机会,泡了杯茶,刷了会儿手机,顺便感慨了一下开源社区的强大……页面中多出了一些新的项目文件夹 —— 这就是我们刚才安装的。参数,浅拷贝只克隆最近一次提交,减少数据量,避免超时问题。初始化,打开该文件,即可运行我们的Tiny YOLO。原创 2025-04-26 01:05:44 · 783 阅读 · 0 评论 -
RK3xxx 部分无法连接虚拟机 无法进行adb连接
我发现部分rk板子可以连接到虚拟机上,部分连接不上。其中尝试了一块是安卓系统的rk板子是可以连接虚拟机。但是用了linux系统的rk板子连接不上虚拟机。尝试了很多办法还是无法连接虚拟机。最后无奈下尝试了双系统,直接在ubuntu系统下adb板子,发现成功链接上了rk3566.也就是我实验的结果是部分rk板子无法正常连接虚拟机,需要用linux主机连接板子。然后也看到一些相关资料,但是太少了,只有这个链接提到了这个问题。原创 2025-04-25 15:45:27 · 200 阅读 · 0 评论 -
手把手教你用LabelImg打造专属YOLO数据集:从标注到训练全攻略!
YOLO(You Only Look Once)是一种快速、高效的目标检测算法。它使用一种简洁的.txt文件格式来保存每张图片中的标注信息,适合构建自定义目标检测数据集。🔹 图像文件.jpg.png等;每张图片将对应一个同名的标签文件(.txtdog.jpg对应dog.txt;图像在训练前通常会被缩放成统一尺寸,例如 YOLOv3 默认输入为416x416。🔹 标签文件(.txt)是一个纯文本文件;每一行表示一个标注目标;字段说明类别编号,从0开始,例如:狗是0,猫是1x_center。原创 2025-04-26 00:46:55 · 624 阅读 · 0 评论 -
YOLO-World震撼发布:零样本开集检测新标杆!实时检测任意物体,从此告别限定类别
YOLO-World通过视觉语言大模型(如CLIP)赋能传统YOLO架构,首次实现高效的开集目标检测。其核心创新包括:1)可重参数化的视觉语言路径聚合网络(RepVL-PAN),动态融合图像与文本特征;2)"提示后检测"范式,通过离线词汇预编码将推理速度提升至52 FPS;3)千万级视觉语言数据预训练策略,在LVIS数据集达到35.4 AP的零样本性能。相比需要重型backbone的GLIP等方案,YOLO-World以轻量化架构同时突破封闭集限制与实时性瓶颈,支持用户自定义任意类别检测,为工业落地提供全新原创 2025-04-27 00:12:42 · 585 阅读 · 0 评论 -
涨点神器!基于通道/多头注意力的YOLOv8改进方案(附代码)
在深度学习中,注意力机制(Attention Mechanism)是一种通过对输入信息加权的方式,模拟人类视觉焦点的技术。它的核心思想是通过聚焦于输入数据中最相关的部分,提升模型的表现能力,尤其是在处理复杂输入时。传统的卷积神经网络(CNN)通过局部感知的方式来提取特征,但这种方式在面对复杂场景时可能会导致信息丢失,特别是在背景复杂、目标密集的情况下。因此,加入注意力机制可以帮助模型自动选择重要的特征或区域,从而提高性能。通道注意力空间注意力和多头注意力。原创 2025-04-27 20:45:48 · 392 阅读 · 0 评论