文章目录
1.概述
在数字通信系统中,需要将输入的数字序列映射为信号波形在信道中传输,此时信源输出数字序列,经过信号映射后成为适于信道传输的数字调制信号。由于数字符号是按码元间隔不断产生的,经过讲数字符号一一映射为相应的信号波形后,就形成了数字调制信号。根据映射后信号的频谱特性,可以分成基带信号和频带信号。
数字基带传输系统模型如图1所示。我们把它分成三个模块:发射机、信道、接收机

在基于加性白高斯噪声信道的数字基带信号的传输中,最佳接收时采用匹配滤波器,使得在最佳采样时刻的信噪比最大,然后在选取合适的判决门限进行判决,使平均误码率最小。
而对于数字带限信号,由于限带线性滤波器冲激响应的波形不限时,其有效持续时间将延申若干码元间隔,因此在接收端采样时刻的采样值可能存在码间干扰,导致误码率增大。而为了使码间干扰消失或减少,需要满足奈奎斯特准则。
即:
x ( n T s ) = { 1 n = 0 0 n ! = 0 (1) x\left( nT_s \right) =\left\{ \begin{array}{l} 1\ \ \ n=0\\ 0\ \ n!=0\\ \end{array} \right. \tag{1} x(nTs)={ 1 n=00 n!=0(1)
∑ m = − ∞ ∞ X ( f + m T s ) = T s (2) \sum_{m=-\infty}^{\infty}{X\left( f+\frac{m}{T_s} \right)}=T_s\tag{2} m=−∞∑∞X(f+Tsm)=Ts(2)
在本文中,采取升余弦滚降函数。
1.1发射机:脉冲调制
这里的发射机,也就是脉冲调制模块,具体来说,所谓脉冲调制,有时候我们也称为基带调制,就是对比特序列的波形表达,更具体来说,在这个部分,是基带波形表达。通俗点说,就是要把一个一个的bit,表示成为具体的波形,才好发送到信道上去。
从图1中可以看出,脉冲调制模块包含三个子模块,即线路编码模块、窄脉冲生成模块、发送滤波器。下面我们就来看看它们如何实现从比特到波形的变化。
1.2信道:AWGN信道
从图1来看,发射机(脉冲调制模块)产生的发送信号,首先经过信道,再进入接收机。在这门课程里面,我们主要考虑加性高斯白噪声(AWGN)信道,在移动通信等课程里面,会讨论更为复杂的衰落信道。
总体来看,我们将讨论两种AWGN信道,即带宽无限的AWGN信道,以及带宽有限的AWGN信道。
1.3接收机:检测
这里的接收机,具体来说,它是把来自信道的信号波形 r ( t ) r\left( t \right) r(t)恢复成二进制序列 { b ^ n } \left\{ \hat{b}_n \right\} {
b^n}。理想情况下 { b ^ n } \left\{ \hat{b}_n \right\} {
b^n}应该与 { b n } \left\{ b_n \right\} {
bn} 完全相同,但由于噪声等影响,会发生误码。
这一部分,我们先简单介绍下检测的基本原理。在后面章节,再详细讨论接收滤波器的设计方法,以及误码率的理论分析方法。
信号进入接收机之后经过的第一个模块,是接收滤波器,其冲激响应和频率传函为 g R ( t ) ⟷ G R ( f ) (3) g_R\left( t \right) \longleftrightarrow G_R\left( f \right)\tag{3} gR(t)⟷GR(f)(3)
2.系统模型
当信道的带宽无限时,可以采用矩形波作为传输的信号,此处使用的为单极性不归零码。
2.1信道带宽无限时的单极性基带传输
接收模型如下:
设发送的2PAM信号为单极性不归零码,信息速率为 R b R_b Rb(单位为bit/s),二进制符号间隔 T b = 1 R b T_b=\frac{1}{R_b} Tb=Rb1,则:
s i ( t ) = { s 1 ( t ) = A “ 1 ” s 2 ( t ) = 0 “ 0 ” 0 ≤ t ≤ T b (4) s_i\left( t \right) =\left\{ \begin{array}{l} s_1\left( t \right) =A\ \ “1”\\ s_2\left( t \right) =0\ \ \ “0”\\ \end{array} \right. \ \ 0\le t\le T_b\tag{4} si(t)={
s1(t)=A “1”s2(t)=0 “0” 0≤t≤Tb(4)
加入均值为0,双边功率谱密度为 N 0 2 \frac{N_0}{2} 2N0 的加性噪声 n w ( t ) n_w\left( t \right) nw(t),在二进制符号间隔 T b T_b Tb内收到的信号为
r ( t ) = s i ( t ) + n w ( t ) = { s 1 ( t ) + n w ( t ) s 2 ( t ) + n w ( t ) = { A + n w ( t ) 0 + n w ( t ) (5) r\left( t \right) =s_i\left( t \right) +n_w\left( t \right) =\left\{ \begin{array}{l} s_1\left( t \right) +n_w\left( t \right)\\ s_2\left( t \right) +n_w\left( t \right)\\ \end{array}=\left\{ \begin{array}{l} A+n_w\left( t \right)\\ 0+n_w\left( t \right)\\ \end{array} \right. \right.\tag{5} r(t)=si(t)+nw(t)={
s1(t)+nw(t)s2(t)+nw(t)={
A+nw(t)0+nw(t)(5)
假设匹配滤波器的冲激响应 h ( t ) h\left( t \right) h(t)与 s 1 ( t ) s_1\left( t \right) s1(t)匹配
h ( t ) = s 1 ( T b − t ) (6) h\left( t \right) =s_1\left( T_b-t \right)\tag{6} h(t)=s1(Tb−t)(6)
2.2信道带宽受限时的双极性基带传输
模型如下:
理想限带基带信道的传递函数为:
C ( f ) = r e c t ( f 2 w ) = { 1 , ∣ f ∣ ≤ W 0 , ∣ f ∣ > W (7) C\left( f \right) =rect\left( \frac{f}{2w} \right) =\left\{ \begin{array}{l} 1,\left| f \right|\le W\\ 0,\left| f \right|>W\\ \end{array} \right.\tag{7} C(f)=rect(2wf)={
1,∣f∣≤W0,∣f∣>W(7)
发送滤波器 g T ( f ) g_T\left( f \right) gT(f)与接收滤波器 g R ( f ) g_R\left( f \right) gR(f)均为滚降升余弦函数。设定发送滤波器和接受滤波器满足:
G T ( f ) = G R ( f ) = X r cos ( f ) (8) G_T\left( f \right) =G_R\left( f \right) =\sqrt{X_{r\cos}\left( f \right)}\tag{8} GT(f)=GR(f)=Xrcos(f)(8)
其中, X r cos ( f ) X_{r\cos}\left( f \right) Xrcos(f)是升余弦滚降传递函数。
设计时,发送信号的功率谱密度为
P s ( f ) = ∂ 2 T s X r cos ( f ) (9) P_s\left( f \right) =\frac{\partial ^2}{T_s}X_{r\cos}\left( f \right)\tag{9} Ps(f)=Ts∂2Xrcos(f)(9)
2.3信道带宽受限时的QPSK传输
四相移相键控(QPSK)又名四进制移相键控,该信号的正弦载波有四个可能的离散相位状态,每个载波相位携带2个二进制符号,其信号表示式为:
s ( t ) = A cos ( ω c + θ i ) , i = 1 , 2 , 3 , 4 (10) s\left( t \right) =A\cos \left( \omega _c+\theta _i \right) ,i=1,2,3,4\tag{10} s(t)=Acos(ωc+θi),i=1,2,3,4(10)
若 θ i = ( i − 1 ) π 2 \theta _i=\left( i-1 \right) \frac{\pi}{2} θi=(i−1)2π,则 θ i \theta _i θi 为 0 , π 2 , π , 3 π 2 0,\frac{\pi}{2},\pi ,\frac{3\pi}{2} 0,2π,π,23π 。
若 θ i = ( 2 i − 1 ) π 4 \theta _i=\left( 2i-1 \right) \frac{\pi}{4} θi=(2i−1)4π ,则 θ i \theta _i θi 为 π 4 , 3 π 4 , 5 π 4 , 7 π 4 \frac{\pi}{4},\frac{3\pi}{4},\frac{5\pi}{4},\frac{7\pi}{4} 4π,43π,45π