【堆】Leetcode 295. 数据流的中位数【困难】

数据流的中位数

中位数是有序整数列表中的中间值。如果列表的大小是偶数,则没有中间值,中位数是两个中间值的平均值。

  • 例如 arr = [2,3,4] 的中位数是 3 。
  • 例如 arr = [2,3] 的中位数是 (2 + 3) / 2 = 2.5 。

实现 MedianFinder 类:

  • MedianFinder() 初始化 MedianFinder 对象。

  • void addNum(int num) 将数据流中的整数 num 添加到数据结构中。

  • double findMedian() 返回到目前为止所有元素的中位数。与实际答案相差 10 -5次方 以内的答案将被接受。

示例 1:

输入
[“MedianFinder”, “addNum”, “addNum”, “findMedian”, “addNum”, “findMedian”]
[[], [1], [2], [], [3], []]
输出
[null, null, null, 1.5, null, 2.0]

解释
MedianFinder medianFinder = new MedianFinder();
medianFinder.addNum(1); // arr = [1]
medianFinder.addNum(2); // arr = [1, 2]
medianFinder.findMedian(); // 返回 1.5 ((1 + 2) / 2)
medianFinder.addNum(3); // arr[1, 2, 3]
medianFinder.findMedian(); // return 2.0

解题思路

  • 1、使用两个优先队列(PriorityQueue),一个最大堆用于存储数据流的前半部分,一个最小堆用于存储数据流的后半部分。
  • 2、维护两个堆,使得最大堆的大小等于或比最小堆的大小大1,这样中位数就可以直接从堆顶元素中获取。
  • 3、当新的元素加入数据流时,根据元素的大小,将其插入到最大堆或最小堆中,并调整两个堆,使得满足上述条件。

Java实现

public class MedianFinder {

    private PriorityQueue<Integer> maxHeap; // 存储较小一半的元素
    private PriorityQueue<Integer> minHeap; // 存储较大一半的元素

    public MedianFinder() {
        maxHeap = new PriorityQueue<>(Collections.reverseOrder());
        minHeap = new PriorityQueue<>();
    }
    
    public void addNum(int num) {
        if (maxHeap.isEmpty() || num <= maxHeap.peek()) {
            maxHeap.offer(num);
        } else {
            minHeap.offer(num);
        }
        
        // 平衡两个堆,使大堆的size == 小堆的size 或者 小堆的size+1
        if (maxHeap.size() > minHeap.size() + 1) {
            minHeap.offer(maxHeap.poll());
        } else if (minHeap.size() > maxHeap.size()) {
            maxHeap.offer(minHeap.poll());
        }
    }
    
    public double findMedian() {
        if (maxHeap.isEmpty() && minHeap.isEmpty()) {
            return 0;
        }
        
        if (maxHeap.size() == minHeap.size()) {
            return (maxHeap.peek() + minHeap.peek()) / 2.0;
        } else {
            return maxHeap.peek();
        }
    }

    public static void main(String[] args) {
        MedianFinder medianFinder = new MedianFinder();
        medianFinder.addNum(1);
        medianFinder.addNum(2);
        System.out.println("Median: " + medianFinder.findMedian()); // Output: 1.5
        medianFinder.addNum(3);
        System.out.println("Median: " + medianFinder.findMedian()); // Output: 2.0
        medianFinder.addNum(8);
        medianFinder.addNum(6);
        medianFinder.addNum(4);
        medianFinder.addNum(5);
        System.out.println("Median: " + medianFinder.findMedian()); // Output: 2.0

    }
}

时间空间复杂度

  • 时间复杂度:

addNum方法的时间复杂度为O(log n),其中n为数据流中元素的个数,因为在插入元素时需要维护堆的平衡。
findMedian方法的时间复杂度为O(1),因为只需要获取堆顶元素即可。

  • 空间复杂度:

由于使用了两个优先队列,所以空间复杂度为O(n)。

<think>嗯,用户想了解如何用编程方法实现在数据流中计算中位数算法或代码示例。首先,我需要回忆一下相关的数据结构。通常,处理数据流中位数的方法是使用两个:一个最大和一个最小。最大保存较小的一半数,最小保存较大的一半数。这样,中位数就可以通过这两个顶元素来快速计算。 用户提供的引用内容里提到了LeetCode上的第295题,这正是关于数据流中位数的题目。所以应该参考这个题的解法。根据引用[1]和引用[3],关键点在于维护两个的平衡,确保它们的元素数量差不超过1。当元素总数为奇数时,中位数是其中一个顶;偶数时则是两个顶的平均值。 接下来要考虑具体的实现方法。例如,在Python中可以使用heapq模块,但需要注意的是,heapq默认是最小,要实现最大的话,可以通过存储负数来实现。每次插入新元素时,需要先判断应该插入哪个,并调整两个的大小,保持平衡。 用户的问题可能还关心如何处理不同情况下的优化,比如数据范围有限时如何优化,但当前的问题主要是基础实现。所以示例代码应该展示如何用两个来动态维护中位数。同时,需要确保代码正确,比如插入元素后的平衡操作,比如当两个大小差超过1时进行调整。 另外,用户提供的引用[2]提到如果数据大部分在0-100范围内,可能使用计数排序等方法优化,但基础示例可能不需要涉及这些,先给出通用解法比较好。 最后,需要验证示例代码的正确性。比如,当插入多个数后,findMedian是否能正确返回中位数。例如,测试用例[1,2,3]的中位数是2,而[1,2,3,4]的中位数是2.5。代码应该正确处理这些情况。 可能还需要考虑时间复杂度的分析,插入操作的时间复杂度是O(log n),因为的插入和弹出操作都是对数时间。而查找中位数是O(1)时间,这满足了高效处理数据流的需求。 总结步骤:创建两个,left最大,right最小。插入时根据大小选择,调整平衡。取中位数时根据总元素数量判断奇偶。</think>### 数据流中位数算法实现 在数据流中实时计算中位数,通常使用**双法**(最大+最小)实现时间复杂度为$O(\log n)$的插入和$O(1)$的查询操作[^3]。 #### 实现步骤 1. **数据结构设计**: - **左(最大)**:存储数据流中较小的一半元素,顶为最大值 - **右(最小)**:存储数据流中较大的一半元素,顶为最小值 - **平衡条件**:$|len(left) - len(right)| \leq 1$ 2. **插入逻辑**: ```python import heapq class MedianFinder: def __init__(self): self.left = [] # 最大(用负数存储) self.right = [] # 最小 def addNum(self, num: int) -> None: # 初始插入左 if not self.left or num <= -self.left[0]: heapq.heappush(self.left, -num) else: heapq.heappush(self.right, num) # 平衡大小 if len(self.left) - len(self.right) > 1: val = -heapq.heappop(self.left) heapq.heappush(self.right, val) elif len(self.right) > len(self.left): val = heapq.heappop(self.right) heapq.heappush(self.left, -val) ``` 3. **查询中位数**: ```python def findMedian(self) -> float: if len(self.left) == len(self.right): return (-self.left[0] + self.right[0]) / 2 else: return -self.left[0] ``` #### 算法特性 1. **时间复杂度**: - `addNum()`: $O(\log n)$ - `findMedian()`: $O(1)$ 2. **空间复杂度**: $O(n)$ #### 示例验证 ```python mf = MedianFinder() mf.addNum(1) mf.addNum(2) print(mf.findMedian()) # 输出1.5 mf.addNum(3) print(mf.findMedian()) # 输出2.0 ``` #### 优化场景 当数据分布有特殊规律时可优化: 1. **有限范围**(如0-100):使用计数排序统计频率[^2] 2. **已知分布比例**(如99%在0-100):结合双法和桶统计[^2]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值