混合策略改进的麻雀搜索算法 matlab代码 改进1:佳点集种群初始化 改进2:采用黄金

混合策略改进的麻雀搜索算法
matlab代码
改进1:佳点集种群初始化
改进2:采用黄金正弦策略改进发现者位置更新公式
改进3:采用Levy飞行策略增强算法跳出局部最优的能力
- 仿真图中包含改进后的ISSA算法与原始SSA算法的比较
- 包含23种测试函数

ID:1416708640181943

MATLAB智能算法


混合策略改进的麻雀搜索算法

1.引言
近年来,麻雀搜索算法(SSA)作为一种启发式优化算法,已被广泛应用于各个领域的问题求解中。然而,在实际应用中,传统的SSA算法在搜索效率和收敛性方面仍存在一定的不足。为了进一步提高SSA算法的性能,本文提出了一种混合策略改进的麻雀搜索算法(ISSA),通过引入多个改进策略,对SSA进行了优化。

2.佳点集种群初始化
在传统的SSA算法中,种群的初始化是随机生成的,这会导致算法的搜索空间过大,而且容易陷入局部最优解。为了解决这一问题,本文提出了一种改进策略,即佳点集种群初始化。该策略通过引入已知问题的先验知识,将种群初始化为包含多个佳点的集合。这样一来,种群的初始分布就更加接近最优解,可以有效地提高算法的搜索效率和收敛性。

3.黄金正弦策略改进发现者位置更新公式
在传统的SSA算法中,发现者位置的更新公式是基于线性递减的方式进行的。然而,这种方式容易导致算法陷入局部最优解。为了解决这一问题,本文采用了黄金正弦策略改进发现者位置更新公式。该策略通过引入黄金比例和正弦函数,使得位置更新具有更好的全局搜索性能。实验结果表明,通过采用黄金正弦策略,ISSA算法在搜索效率和收敛性方面均得到了显著提升。

4.Levy飞行策略增强算法跳出局部最优的能力
传统的SSA算法在跳出局部最优解方面存在一定的不足。为了解决这一问题,本文引入了Levy飞行策略,并将其应用于ISSA算法中。通过采用Levy飞行策略,ISSA算法具有了更好的跳出局部最优解的能力,可以更全面地搜索解空间,避免陷入局部最优解。实验结果表明,通过引入Levy飞行策略,ISSA算法在求解复杂问题时表现出了更好的性能。

5.仿真实验与结果分析
为了验证ISSA算法的性能,本文设计了一组仿真实验,并将ISSA算法与原始SSA算法进行了比较。实验结果显示,在包含23种测试函数的情况下,ISSA算法相比于原始SSA算法在搜索效率和收敛性方面均取得了显著的改进。通过引入佳点集种群初始化、黄金正弦策略改进发现者位置更新公式以及Levy飞行策略增强算法跳出局部最优的能力,ISSA算法在各种测试函数的求解中均表现出了更好的性能。

6.结论
在本文中,我们提出了一种混合策略改进的麻雀搜索算法(ISSA),通过引入佳点集种群初始化、黄金正弦策略改进发现者位置更新公式以及Levy飞行策略增强算法跳出局部最优的能力,对传统的SSA算法进行了优化。实验结果表明,通过采用这些改进策略,ISSA算法在搜索效率和收敛性方面均取得了显著的改进。相信本文的提出

【相关代码,程序地址】:http://fansik.cn/708640181943.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值