区间DP

本文介绍了动态规划在解决合并石子问题上的应用,通过两个具体习题——YOUARETHEONE和Stringpainter,展示了如何运用区间DP求解复杂问题。在YOUARETHEONE中,涉及了石子合并的代价最小化;在Stringpainter中,讨论了字符串涂色的最优化策略。这两个问题都体现了动态规划求解区间最优解的特点,即大的区间由包含它的小区间组成,并满足状态转移方程。
摘要由CSDN通过智能技术生成

问题引入

有N堆石子排成一排,每一堆石子有一定的数量。现在将N堆石子合并成为一堆。合并的过程中只能每次将N堆石子合并成一堆,每次合并花费的代价为这两堆石子的和,经过N-1次合并后成为一堆。求总的代价最小值。
题目特点分析:
1、求某个区间的最优解
2、大的区间由包含于他的小区间组成
3、满足DP的三个基本条件
dp[i][j]=min(dp[i][j],dp[i][k]+dp[k+1][j]+w[i][j]);

for(int len=2;len<=n;len++) // 区间长度
   for(int i=1;i<=n;i++)    // 枚举起点
   {
    int j =i+len-1;   // 计算出区间终点
    if(j>n) break;    // 越界结束
    for(int k=i;k<j;k++)  // 枚举分割点,构造状态转移方程
    {
    	dp[i][j]=min(dp[i][j],dp[i][k]+dp[k+1][j]+w[i][j]);
    }
}	
// 特别的,初始化时,当i=j,由于不需要合并,所以dp[i][j]=0
//记忆化DFS实现方法,更简单,不容易出错
int MINdfs(int l,int r) //记忆化DFS 初始化为-1
{
	int &D = dp[l][r];
	if(D!=inf) return D;
	if(l==r) return D=0;
	for(int i=l;i<r;i++)
	D = min(D,MINdfs(l,i)+MINdfs(i+1,r)+sum[r]-sum[l-1]);
	return D;

习题练习

1、 YOU ARE THE ONE

#include <iostream>
#include <algorithm>
#include <string>
#include <cstring>
using namespace std;
const int N = 105;
const int inf = 0x3f3f3f3f;
int v[N],sum[N],f[N][N];
int T,n;
int dp(int i,int j)
{
    if(i>=j) return 0;
    if(f[i][j]!=inf) return f[i][j];
    for(int k=1;k<=j-i+1;k++)
        f[i][j]=min(f[i][j],dp(i+1,i+k-1)+dp(i+k,j)+k*(sum[j]-sum[i+k-1])+v[i]*(k-1));
    return f[i][j];
}
int main()
{
    cin >> T;
    for(int c=1;c<=T;c++)
    {
        cin >> n;
        for(int i=1;i<=n;i++)
        {
            cin >> v[i];
            sum[i]=sum[i-1]+v[i];
        }
        for(int i=1;i<=n;i++)
        {
            for(int j=1;j<=n;j++)
                f[i][j]=inf;
        }
        cout << "Case #" << c << ": "<<dp(1,n)<< endl;
    }
    return 0;
}

2、String painter

#include <iostream>
#include <algorithm>
#include <string>
#include <cstring>
using namespace std;
const int N = 105;
const int inf = 0x3f3f3f3f;
int v[N],f[N],dp[N][N];
int T,n;

int main()
{
    char s1[N],s2[N];
    while(~scanf("%s%s",s1,s2))
    {
        memset(dp,0,sizeof(dp));
        int n = strlen(s1);
        for(int i=0;i<n;i++)
            dp[i][i]=1;
        for(int l=1;l<n;l++)
        {
            for(int i=0;i+l<n;i++)
            {
                int j = i+l;
                dp[i][j]=dp[i+1][j]+1;
                for(int k=i+1;k<=j;k++)
                    dp[i][j]=min(dp[i][j],dp[i+1][k]+dp[k+1][j]+(s2[i]!=s2[k]));
            }
        }
        for(int i=0;i<n;i++){
            f[i]=dp[0][i];
            if(s1[i]==s2[i])
            {
                if(i==0) f[i]=0;
                else f[i]=f[i-1];
            }
            for(int k=0;k<i;k++)
                f[i]=min(f[i],f[k]+dp[k+1][i]);
        }
        cout << f[n-1] << endl;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值