python执行各种sql语句,让你分析数据更简洁

640?wx_fmt=jpeg&wxfrom=5&wx_lazy=1

由于许多潜在的pandas用户对SQL有一定的了             解 ,因此本页旨在提供一些使用pandas来执行各种SQL操作的示例。

640?wx_fmt=png&wxfrom=5&wx_lazy=1

大部分的例子将利用tips在pandas测试中发现数据集。我们将数据读入一个名为tips的DataFrame,并假设我们有一个同名和结构的数据库表。

640?wx_fmt=png&wxfrom=5&wx_lazy=1

一、SELECT

在SQL中,选择是使用逗号分隔的列表来选择(或者* 选择所有列):

640?wx_fmt=png&wxfrom=5&wx_lazy=1

在pandas中,列的选择是通过传递列名到您的DataFrame:

640?wx_fmt=png&wxfrom=5&wx_lazy=1

调用没有列名称列表的DataFrame将显示所有列(类似于SQL的 *)。

二、WHERE

SQL中的过滤是通过WHERE子句完成的。

0?wx_fmt=png

数据框dataframe可以通过多种方式进行过滤; 最直观的是使用 布尔索引

0?wx_fmt=png

上面的语句只是将一个SeriesTrue / False对象传递给DataFrame,所有行都返回True。

0?wx_fmt=png

就像SQL的OR和AND一样,可以使用|将多个条件传递给DataFrame (OR)和&(AND)。

0?wx_fmt=png

0?wx_fmt=png

0?wx_fmt=png

0?wx_fmt=png

NULL检查使用notna()isna() 方法完成。

0?wx_fmt=png

假设我们有一个与上面的DataFrame结构相同的表。我们只能看到col2 IS NULL 的记录与下面的查询:

0?wx_fmt=png

0?wx_fmt=png

获取col1不是NULL的项目可以完成notna()

0?wx_fmt=png

0?wx_fmt=png

今日赠言

生活中的各种喧嚣会容易让人疲乏,抽出一点时间留给自己吧。做你喜欢的事情,想你开心的事情,然后微笑面对今天。


推荐阅读:


机器学习篇

机器学习入门科普篇--系列二

机器学习算法的随机数据生成总结

python 数据清洗篇

python 数据清洗篇

想入门深度学习?先理解这25个概念!

自然语言处理中的Attention Model:是什么及为什么

用户画像之用户性别识别

机器学习入门科普篇--系列一

客户流失分析

全球变暖温度分析图

数据挖掘学习笔记--决策树C4.5

决策树你应该知道的几点

决策树的Python实现

机器学习之------K-Means(K均值)

机器学习算法与Python实践之(一)k近邻(KNN)

数据科学的完整学习路径

对线性回归、逻辑回归、各种回归的概念学习


python学习篇

优雅的Python

利用python操作Excel教程

让你的 Python 代码优雅又地道

Python笔记

python学习笔记

Python小知识:Python 迭代器与生成器

python函数简书

Python常用模块资料

Python 禅道

Python 字符串操作方法大全

Python的编码命名规则

python 数组的del ,remove,pop区别


参考:http://pandas.pydata.org/pandas-docs/stable/comparison_with_sql.html



没有更多推荐了,返回首页