链接
题解
可以发现,如果串中有奇数个 1 1 1我就可以再造出一个放在末尾
这个串里同时能存在的最多 1 1 1的个数就是 ( c o u n t ( 1 ) + c o u n t ( 1 ) m o d    2 ) (count(1)+count(1)\mod2) (count(1)+count(1)mod2)
而且会发现两个 1 1 1的中间 0 0 0的数目可以任意构造
所以只需要判断 1 1 1的个数够不够用就行了
代码
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#define iinf 0x3f3f3f3f
#define linf (1ll<<60)
#define eps 1e-8
#define maxn 1000010
#define cl(x) memset(x,0,sizeof(x))
#define rep(_,__) for(_=1;_<=(__);_++)
#define em(x) emplace(x)
#define emb(x) emplace_back(x)
#define emf(x) emplace_front(x)
using namespace std;
using namespace __gnu_pbds;
typedef long long ll;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
ll read(ll x=0)
{
ll c, f(1);
for(c=getchar();!isdigit(c);c=getchar())if(c=='-')f=-f;
for(;isdigit(c);c=getchar())x=x*10+c-0x30;
return f*x;
}
bitset<2019> a,b;
int main()
{
cin>>a>>b;
if(a.count()+a.count()%2>=b.count())cout<<"YES";
else cout<<"NO";
return 0;
}