链接
题解
我其实是要在给定的串的字母间隙之间插入一些字母,但是这里有些限制
假设给定串长度为 n n n
那么一共有 n + 1 n+1 n+1个间隙,我要插入 m − n m-n m−n个字母
第 i i i字母假设为 T i T_i Ti,为了不重复统计,必须让 T i T_i Ti和 T i − 1 T_{i-1} Ti−1的间隙之间不能插入 T i T_i Ti这种字母,其余的 25 25 25种字母都可以随便用
但是最后一个间隙没有限制, 26 26 26种字母都可以用
枚举最后一个间隙填 k k k个字母,那么方案数为
∑ k = 0 m − n 2 6 k × C m − k − 1 n − 1 × 2 5 m − k − n \sum_{k=0}^{m-n} 26^{k} \times C_{m-k-1}^{n-1} \times 25^{m-k-n} k=0∑m−n26k×Cm−k−1n−1×25m−k−n
代码
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#define iinf 0x3f3f3f3f
#define linf (1ll<<60)
#define eps 1e-8
#define maxn 1000010
#define maxe 1000010
#define cl(x) memset(x,0,sizeof(x))
#define rep(_,__) for(_=1;_<=(__);_++)
#define em(x) emplace(x)
#define emb(x) emplace_back(x)
#define emf(x) emplace_front(x)
#define fi first
#define se second
#define de(x) cerr<<#x<<" = "<<x<<endl
using namespace std;
using namespace __gnu_pbds;
typedef long long ll;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
ll read(ll x=0)
{
ll c, f(1);
for(c=getchar();!isdigit(c);c=getchar())if(c=='-')f=-f;
for(;isdigit(c);c=getchar())x=x*10+c-0x30;
return f*x;
}
struct EasyMath
{
ll prime[maxn], phi[maxn], mu[maxn];
bool mark[maxn];
ll fastpow(ll a, ll b, ll c)
{
ll t(a%c), ans(1ll);
for(;b;b>>=1,t=t*t%c)if(b&1)ans=ans*t%c;
return ans;
}
void shai(ll N)
{
ll i, j;
for(i=2;i<=N;i++)mark[i]=false;
*prime=0;
phi[1]=mu[1]=1;
for(i=2;i<=N;i++)
{
if(!mark[i])prime[++*prime]=i, mu[i]=-1, phi[i]=i-1;
for(j=1;j<=*prime and i*prime[j]<=N;j++)
{
mark[i*prime[j]]=true;
if(i%prime[j]==0)
{
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
mu[i*prime[j]]=-mu[i];
phi[i*prime[j]]=phi[i]*(prime[j]-1);
}
}
}
ll inv(ll x, ll p) //p是素数
{return fastpow(x%p,p-2,p);}
}em;
#define mod 1000000007ll
char T[maxn];
ll ans, n, m, fact[maxn], _fact[maxn];
ll C(ll n, ll m)
{
return fact[n]*_fact[m]%mod*_fact[n-m]%mod;
}
int main()
{
ll i, ans(0);
fact[0]=_fact[0]=1;
rep(i,1e6)fact[i]=fact[i-1]*i%mod, _fact[i]=em.fastpow(fact[i],mod-2,mod);
scanf("%s",T);
m = read();
n = strlen(T);
if(n>m)
{
printf("0");
return 0;
}
for(i=0;i<=m-n;i++)
{
ans += em.fastpow(26,i,mod) * C(m-i-1,n-1) %mod * em.fastpow(25,m-i-n,mod);
ans %= mod;
}
printf("%lld",ans);
return 0;
}