链接
题解
用 f k , i , j f_{k,i,j} fk,i,j表示用 k k k个棋子去填充 i × j i \times j i×j的棋盘,每行至少要有一个棋子,每列也至少有一个棋子的方案数
f k , i , j = ∑ x = 0 i ∑ y = 0 j ( − 1 ) i + j ( ( i − x ) ( j − y ) k ) f_{k,i,j} = \sum_{x=0}^i \sum_{y=0}^j (-1)^{i+j} \binom{(i-x)(j-y)}{k} fk,i,j=x=0∑iy=0∑j(−1)i+j(k(i−x)(j−y))
g i , j , k g_{i,j,k} gi,j,k表示用前 k k k种颜色的棋子,填满 i × j i \times j i×j的棋盘,使得每行都至少有一个棋子,每列也至少有一个棋子的方案数
g i , j , k = ∑ x = 1 i ∑ y = 1 j ( i x ) ( j y ) f x , y , a k g i − x , j − y , k − 1 g_{i,j,k} = \sum_{x=1}^i \sum_{y=1}^j \binom{i}{x} \binom{j}{y} f_{x,y,a_k}\ g_{i-x,j-y,k-1} gi,j,k=x=1∑iy=1∑j(xi)(yj)fx,y,ak gi−x,j−y,k−1
经验教训
在分析题目的过程中,要始终不忘初心,记住自己最开始是想干什么,如果忽略了这一点,很可能把简单的问题复杂化,甚至做不出来
代码
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#define iinf 0x3f3f3f3f
#define linf (1ll<<60)
#define eps 1e-8
#define maxn 35
#define cl(x) memset(x,0,sizeof(x))
#define rep(_,__) for(_=1;_<=(__);_++)
#define em(x) emplace(x)
#define emb(x) emplace_back(x)
#define emf(x) emplace_front(x)
#define fi first
#define se second
#define de(x) cerr<<#x<<" = "<<x<<endl
using namespace std;
using namespace __gnu_pbds;
typedef long long ll;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
ll read(ll x=0)
{
ll c, f(1);
for(c=getchar();!isdigit(c);c=getchar())if(c=='-')f=-f;
for(;isdigit(c);c=getchar())x=x*10+c-0x30;
return f*x;
}
struct EasyMath
{
ll prime[maxn], phi[maxn], mu[maxn];
bool mark[maxn];
ll fastpow(ll a, ll b, ll c)
{
ll t(a%c), ans(1ll);
for(;b;b>>=1,t=t*t%c)if(b&1)ans=ans*t%c;
return ans;
}
void shai(ll N)
{
ll i, j;
for(i=2;i<=N;i++)mark[i]=false;
*prime=0;
phi[1]=mu[1]=1;
for(i=2;i<=N;i++)
{
if(!mark[i])prime[++*prime]=i, mu[i]=-1, phi[i]=i-1;
for(j=1;j<=*prime and i*prime[j]<=N;j++)
{
mark[i*prime[j]]=true;
if(i%prime[j]==0)
{
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
mu[i*prime[j]]=-mu[i];
phi[i*prime[j]]=phi[i]*(prime[j]-1);
}
}
}
ll inv(ll x, ll p) //p是素数
{return fastpow(x%p,p-2,p);}
}em;
#define mod 1000000009ll
ll f[maxn*maxn][maxn][maxn], g[maxn][maxn][15], a[maxn], fact[10010], _fact[10010];
ll C(ll n, ll m)
{
if(m>n or m<0)return 0;
return fact[n]*_fact[m]%mod*_fact[n-m]%mod;
}
int main()
{
ll n=read(), m=read(), c=read(), i, j, k, ii, jj;
set<ll> s;
rep(i,c)a[i]=read(), s.insert(a[i]);
fact[0]=_fact[0]=1;
rep(i,1e4)fact[i]=fact[i-1]*i%mod, _fact[i]=em.inv(fact[i],mod);
rep(k,n*m)rep(i,n)rep(j,m)
{
if(s.find(k)==s.end())continue;
for(ii=0;ii<=i;ii++)for(jj=0;jj<=j;jj++)
{
ll t=ii+jj, cnt=C(i,ii)*C(j,jj)%mod*C((i-ii)*(j-jj),k)%mod;
if(t&1)f[k][i][j]-=cnt;
else f[k][i][j]+=cnt;
f[k][i][j]%=mod;
}
}
g[0][0][0]=1;
rep(i,n)rep(j,m)rep(k,c)rep(ii,i)rep(jj,j)
{
(g[i][j][k]+=C(i,ii)*C(j,jj)%mod*g[i-ii][j-jj][k-1]%mod*f[a[k]][ii][jj])%=mod;
}
ll ans=0;
rep(i,n)rep(j,m)
{
ans += g[i][j][c]*C(n,i)%mod*C(m,j)%mod;
ans %= mod;
}
printf("%lld",(ans+mod)%mod);
return 0;
}