nowcoder20619 禁书目录

链接

点击跳转

题解

第一次接触这种类型的题目

把计数题当成期望题来做

算出期望,再乘以总方案数,就得到了符合条件的方案数

先假设所有的 b i b_i bi都不同**

假设一本书,不小于他的有 k i k_i ki个,那么在这 k i k_i ki本的相对顺序没有约束的情况下,这本书产生贡献的概率就是 “总情况数” × 1 k i \times \frac{1}{k_i} ×ki1

现在考虑 b i b_i bi有重复

按照 b i b_i bi分类,相同的分到一组,每组从小到大排序

假设每组中 a i a_i ai都互不相同

第一本书产生贡献的概率是 1 k 2 \frac{1}{k_2} k21

第二本书想要产生贡献,就必须要让第一本书不能产生贡献,所以概率是 ( 1 − 1 k 1 ) 1 k 2 (1-\frac{1}{k_1}) \frac{1}{k_2} (1k11)k21。这样为啥是对的呢,因为实际上 ( 1 − 1 k 1 ) (1-\frac{1}{k_1}) (1k11)是限制了第一本书和比他大的书之间的相对关系,但是第 2 2 2本书和比他大的书之间任何两本的相对顺序没有被限制,所以概率还是 1 k 2 \frac{1}{k_2} k21

如果 a i a_i ai有重复怎么办呢

考虑 a 1 = a 2 a_1=a_2 a1=a2的情况,这个咋办呢

先算了第一本书造成贡献的概率为 1 k 1 \frac{1}{k_1} k11,那么 ( 1 − 1 k 1 ) (1-\frac{1}{k_1}) (1k11)也就代表第一本书必定要排在第二本书的后面,这个时候 ( 1 − 1 k 1 ) 1 k 2 (1-\frac{1}{k_1})\frac{1}{k_2} (1k11)k21就不能代表第二本书产生贡献的概率,因为在固定了前两本书的相对顺序之后,第二本书排在第一位的概率不再是 1 k 2 \frac{1}{k_2} k21

但是转念一想,我要算的不是第 2 2 2本书排在 k 2 k_2 k2本书的第一本的情况吗,既然 ( 1 − 1 k 1 ) (1-\frac{1}{k_1}) (1k11)这个概率本身含有了“第一本书在第二本书的后面”的意思,岂不是说我就不用管第一本书了,那么这种情况下第二本书产生贡献的概率就成了 1 k 2 − 1 \frac{1}{k_2-1} k211

至此,问题已全部解决

代码

#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#define iinf 0x3f3f3f3f
#define linf (1ll<<60)
#define eps 1e-8
#define maxn 1000010
#define maxe 1000010
#define cl(x) memset(x,0,sizeof(x))
#define rep(_,__) for(_=1;_<=(__);_++)
#define em(x) emplace(x)
#define emb(x) emplace_back(x)
#define emf(x) emplace_front(x)
#define fi first
#define se second
#define de(x) cerr<<#x<<" = "<<x<<endl
using namespace std;
using namespace __gnu_pbds;
typedef long long ll;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
ll read(ll x=0)
{
    ll c, f(1);
    for(c=getchar();!isdigit(c);c=getchar())if(c=='-')f=-f;
    for(;isdigit(c);c=getchar())x=x*10+c-0x30;
    return f*x;
}
struct EasyMath
{
    ll prime[maxn], phi[maxn], mu[maxn];
    bool mark[maxn];
    ll fastpow(ll a, ll b, ll c)
    {
        ll t(a%c), ans(1ll);
        for(;b;b>>=1,t=t*t%c)if(b&1)ans=ans*t%c;
        return ans;
    }
    void shai(ll N)
    {
        ll i, j;
        for(i=2;i<=N;i++)mark[i]=false;
        *prime=0;
        phi[1]=mu[1]=1;
        for(i=2;i<=N;i++)
        {
            if(!mark[i])prime[++*prime]=i, mu[i]=-1, phi[i]=i-1;
            for(j=1;j<=*prime and i*prime[j]<=N;j++)
            {
                mark[i*prime[j]]=true;
                if(i%prime[j]==0)
                {
                    phi[i*prime[j]]=phi[i]*prime[j];
                    break;
                }
                mu[i*prime[j]]=-mu[i];
                phi[i*prime[j]]=phi[i]*(prime[j]-1);
            }
        }
    }
    ll inv(ll x, ll p)  //p是素数
    {return fastpow(x%p,p-2,p);}
}em;
vector<pll> v;
map<ll,ll> tb;
vector<ll> lis[maxn], w, p;
#define mod 998244353ll
int main()
{
    ll n, a, b, i, tot=0, ans=0;
    n=read();
    rep(i,n)
    {
        a=read(), b=read();
        v.emb( pll(b,a) );
        if(tb.find(b)==tb.end())tb[b]=++tot;
    }
    sort(v.begin(),v.end());
    for(auto pr:v)
    {
        lis[tb[pr.first]].emb(pr.second);
        w.emb(pr.second);
    }
    sort(w.begin(),w.end());
    rep(i,tot)
    {
        ll s=0;
        ll cnt=0, last=-1;
        for(auto x:lis[i])
        {
            if(x==last)cnt++;
            else cnt=0;
            last=x;
            ll t=(w.end()-lower_bound(w.begin(),w.end(),x)-cnt), p=(1-s)*em.inv(t,mod)%mod;
            (s+=p)%=mod;
        }
        (ans+=s)%=mod;
    }
    rep(i,n)(ans*=i)%=mod;
    printf("%lld",(ans+mod)%mod);
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值