nowcoder20824小可爱表白

链接

点击跳转

题解

好一个脑筋急转弯

∑ i = 0 n ∑ j = 0 n ∑ k = 0 n k ( i k − j ) ( n − i − 1 j − 1 ) \sum_{i=0}^{n}\sum_{j=0}^{n}\sum_{k=0}^{n} k \binom{i}{k-j} \binom{n-i-1}{j-1} i=0nj=0nk=0nk(kji)(j1ni1)

不妨先枚举 i i i

那么就是找 ( 1 + x ) i × ( 1 + x ) n − 1 − i = ( 1 + x ) n − 1 (1+x)^{i} \times (1+x)^{n-1-i}=(1+x)^{n-1} (1+x)i×(1+x)n1i=(1+x)n1中的 k − 1 k-1 k1次项系数,再乘以 k k k,再求和

f ( x ) = x ( 1 + x ) n − 1 f(x)=x(1+x)^{n-1} f(x)=x(1+x)n1,求导得 f ′ ( x ) = ( 1 + x ) n − 1 + ( n − 1 ) ( 1 + x ) n − 2 f'(x)=(1+x)^{n-1}+(n-1)(1+x)^{n-2} f(x)=(1+x)n1+(n1)(1+x)n2

代入 x = 1 x=1 x=1,得到答案

2 n − 1 + ( n − 1 ) 2 n − 2 2^{n-1} + (n-1)2^{n-2} 2n1+(n1)2n2

注意这只是对某个确定的 i i i的答案,还要乘以 n n n才是题目要的那个答案

代码

#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#define iinf 0x3f3f3f3f
#define linf (1ll<<60)
#define eps 1e-8
#define maxn 1000010
#define maxe 1000010
#define cl(x) memset(x,0,sizeof(x))
#define rep(_,__) for(_=1;_<=(__);_++)
#define em(x) emplace(x)
#define emb(x) emplace_back(x)
#define emf(x) emplace_front(x)
#define fi first
#define se second
#define de(x) cerr<<#x<<" = "<<x<<endl
using namespace std;
using namespace __gnu_pbds;
typedef long long ll;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
ll read(ll x=0)
{
    ll c, f(1);
    for(c=getchar();!isdigit(c);c=getchar())if(c=='-')f=-f;
    for(;isdigit(c);c=getchar())x=x*10+c-0x30;
    return f*x;
}
struct EasyMath
{
    ll prime[maxn], phi[maxn], mu[maxn];
    bool mark[maxn];
    ll fastpow(ll a, ll b, ll c)
    {
        ll t(a%c), ans(1ll);
        for(;b;b>>=1,t=t*t%c)if(b&1)ans=ans*t%c;
        return ans;
    }
    void shai(ll N)
    {
        ll i, j;
        for(i=2;i<=N;i++)mark[i]=false;
        *prime=0;
        phi[1]=mu[1]=1;
        for(i=2;i<=N;i++)
        {
            if(!mark[i])prime[++*prime]=i, mu[i]=-1, phi[i]=i-1;
            for(j=1;j<=*prime and i*prime[j]<=N;j++)
            {
                mark[i*prime[j]]=true;
                if(i%prime[j]==0)
                {
                    phi[i*prime[j]]=phi[i]*prime[j];
                    break;
                }
                mu[i*prime[j]]=-mu[i];
                phi[i*prime[j]]=phi[i]*(prime[j]-1);
            }
        }
    }
    ll inv(ll x, ll p)  //p是素数
    {return fastpow(x%p,p-2,p);}
}em;
#define mod 998244353ll
ll n;
int main()
{
    cin>>n;
    cout <<  ( em.fastpow(2,n-1,mod) + (n-1)*em.fastpow(2,n-2,mod) )%mod * n %mod;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值