链接
题解
好一个脑筋急转弯
∑ i = 0 n ∑ j = 0 n ∑ k = 0 n k ( i k − j ) ( n − i − 1 j − 1 ) \sum_{i=0}^{n}\sum_{j=0}^{n}\sum_{k=0}^{n} k \binom{i}{k-j} \binom{n-i-1}{j-1} i=0∑nj=0∑nk=0∑nk(k−ji)(j−1n−i−1)
不妨先枚举 i i i
那么就是找 ( 1 + x ) i × ( 1 + x ) n − 1 − i = ( 1 + x ) n − 1 (1+x)^{i} \times (1+x)^{n-1-i}=(1+x)^{n-1} (1+x)i×(1+x)n−1−i=(1+x)n−1中的 k − 1 k-1 k−1次项系数,再乘以 k k k,再求和
令 f ( x ) = x ( 1 + x ) n − 1 f(x)=x(1+x)^{n-1} f(x)=x(1+x)n−1,求导得 f ′ ( x ) = ( 1 + x ) n − 1 + ( n − 1 ) ( 1 + x ) n − 2 f'(x)=(1+x)^{n-1}+(n-1)(1+x)^{n-2} f′(x)=(1+x)n−1+(n−1)(1+x)n−2
代入 x = 1 x=1 x=1,得到答案
2 n − 1 + ( n − 1 ) 2 n − 2 2^{n-1} + (n-1)2^{n-2} 2n−1+(n−1)2n−2
注意这只是对某个确定的 i i i的答案,还要乘以 n n n才是题目要的那个答案
代码
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#define iinf 0x3f3f3f3f
#define linf (1ll<<60)
#define eps 1e-8
#define maxn 1000010
#define maxe 1000010
#define cl(x) memset(x,0,sizeof(x))
#define rep(_,__) for(_=1;_<=(__);_++)
#define em(x) emplace(x)
#define emb(x) emplace_back(x)
#define emf(x) emplace_front(x)
#define fi first
#define se second
#define de(x) cerr<<#x<<" = "<<x<<endl
using namespace std;
using namespace __gnu_pbds;
typedef long long ll;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
ll read(ll x=0)
{
ll c, f(1);
for(c=getchar();!isdigit(c);c=getchar())if(c=='-')f=-f;
for(;isdigit(c);c=getchar())x=x*10+c-0x30;
return f*x;
}
struct EasyMath
{
ll prime[maxn], phi[maxn], mu[maxn];
bool mark[maxn];
ll fastpow(ll a, ll b, ll c)
{
ll t(a%c), ans(1ll);
for(;b;b>>=1,t=t*t%c)if(b&1)ans=ans*t%c;
return ans;
}
void shai(ll N)
{
ll i, j;
for(i=2;i<=N;i++)mark[i]=false;
*prime=0;
phi[1]=mu[1]=1;
for(i=2;i<=N;i++)
{
if(!mark[i])prime[++*prime]=i, mu[i]=-1, phi[i]=i-1;
for(j=1;j<=*prime and i*prime[j]<=N;j++)
{
mark[i*prime[j]]=true;
if(i%prime[j]==0)
{
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
mu[i*prime[j]]=-mu[i];
phi[i*prime[j]]=phi[i]*(prime[j]-1);
}
}
}
ll inv(ll x, ll p) //p是素数
{return fastpow(x%p,p-2,p);}
}em;
#define mod 998244353ll
ll n;
int main()
{
cin>>n;
cout << ( em.fastpow(2,n-1,mod) + (n-1)*em.fastpow(2,n-2,mod) )%mod * n %mod;
return 0;
}