nowcoder50596 Combination (含组合数取模讲解)

题目链接

点击跳转

从阶乘说起

p = 10007 p=10007 p=10007的时候,如何计算 n ! m o d    p n! \mod p n!modp

显然,当 n ≥ p n \ge p np时, n ! = 0 n! =0 n!=0,否则我可以线性求出 n ! n! n!

注意到, ( n m ) = n ! m ! ( n − m ) ! \binom{n}{m} = \frac{n!}{m!(n-m)!} (mn)=m!(nm)!n!,如何计算 n ! m ! ( n − m ) ! \frac{n!}{m!(n-m)!} m!(nm)!n!呢?

如果我算出 n ! m o d    p n! \mod p n!modp,再算出 m ! m o d    p m! \mod p m!modp,再算出 ( n − m ) m o d    p (n-m) \mod p (nm)modp,最后求一下分母的逆元,看起来貌似是很常用的流程,但是当 n ≥ p n \ge p np的时候,算出来答案是 0 0 0

这是为啥呢,原因很简单, x x x在模 p p p意义下逆元存在当且仅当 ( x , p ) = 1 (x,p)=1 (x,p)=1,而 n ! n! n! p p p的倍数,所以这里求逆元的算法失效了。

那怎么办呢?

我们可以计算出分子、分母中 p p p的次数,然后用分子的减去分母的,就得到最后答案中 p p p的次数,因为组合数都是整数,所以这个次数不能为负。如果这个次数为正,那么 ( n m ) m o d    p = 0 \binom{n}{m} \mod p=0 (mn)modp=0,否则,答案显然不为 0 0 0,我们有别的方法来计算这个东西。

只要把分子、分母中出去 p p p之外的乘积在模 p p p意义下的值,以及 p p p的幂次都求出来,我们就具备了求解组合数在模 p p p意义下的值的所有信息。

现在要解决的问题是,如何将 n ! n! n!表示成 x × p q x \times p^q x×pq,其中 ( x , p ) = 1 (x,p)=1 (x,p)=1

因为 p p p是素数,所以 1 , 2 , … , p − 1 1,2,\dots,p-1 1,2,,p1中都不包含 p p p p p p中包含 p p p的一次幂。接下来是 p + 1 , p + 2 , … , 2 p − 1 p+1,p+2,\dots,2p-1 p+1,p+2,,2p1这一段也不包含 p p p,而且这一段的乘积在模 p p p意义下和第一段相等,接下来一个数字是 2 p 2p 2p…以此类推,可以发现 n ! n! n!被分成 ⌊ n p ⌋ \lfloor \frac{n}{p} \rfloor pn个整段,以及最后一段 ( n m o d    p ) (n \mod p) (nmodp)个数字的连乘,前面每段都是 ( p − 1 ) ! (p-1)! (p1)!和一个 p p p的倍数。

也就是
n ! = ( p − 1 ) ! ⌊ n p ⌋ × ( n % p ) ! × p ⌊ n p ⌋ × ( ⌊ n p ⌋ ) ! n! = (p-1)!^{\lfloor \frac{n}{p} \rfloor} \times (n\%p)! \times p^{\lfloor \frac{n}{p} \rfloor} \times ({\lfloor \frac{n}{p} \rfloor})! n!=(p1)!pn×(n%p)!×ppn×(pn)!

其中 % \% %表示求余数

卢卡斯定理

我已经得到了上面所描述的重要等式,将其带入 ( n m ) = n ! m ! ( n − m ) ! \binom{n}{m} = \frac{n!}{m!(n-m)!} (mn)=m!(nm)!n!并化简,得到:

( n m ) = p ! ⌊ n / p ⌋ − ⌊ m / p ⌋ − ⌊ ( n − m ) / p ⌋ × ( n % p ) ! ( m % p ) ! ( ( n − m ) % p ) ! × ⌊ n / p ⌋ ! ⌊ m / p ⌋ ! ⌊ ( n − m ) / p ⌋ ! \binom{n}{m} = p!^{\lfloor n/p \rfloor-\lfloor m/p \rfloor-\lfloor (n-m)/p \rfloor} \times \frac{(n\%p)!}{(m\%p)!((n-m)\%p)!} \times \frac{\lfloor n/p \rfloor!}{\lfloor m/p \rfloor! \lfloor (n-m)/p \rfloor!} (mn)=p!n/pm/p(nm)/p×(m%p)!((nm)%p)!(n%p)!×m/p!(nm)/p!n/p!

如果 ⌊ n / p ⌋ − ⌊ m / p ⌋ − ⌊ ( n − m ) / p ⌋ = 0 \lfloor n/p \rfloor-\lfloor m/p \rfloor-\lfloor (n-m)/p \rfloor = 0 n/pm/p(nm)/p=0,那么 ( n m ) % p = 0 \binom{n}{m}\%p=0 (mn)%p=0,否则 ( n m ) = ( ⌊ n / p ⌋ ⌊ m / p ⌋ ) ( n % p m % p ) \binom{n}{m}=\binom{\lfloor n/p \rfloor}{\lfloor m/p \rfloor} \binom{n\%p}{m\%p} (mn)=(m/pn/p)(m%pn%p)

⌊ n / p ⌋ − ⌊ m / p ⌋ − ⌊ ( n − m ) / p ⌋ > 0 \lfloor n/p \rfloor-\lfloor m/p \rfloor-\lfloor (n-m)/p \rfloor > 0 n/pm/p(nm)/p>0,仅当 n % p < m % p n\%p < m\% p n%p<m%p,如果我规定“当 m > n m>n m>n ( n m ) = 0 \binom{n}{m}=0 (mn)=0”,那么两种情况就可以统一写成

( n m ) = ( ⌊ n / p ⌋ ⌊ m / p ⌋ ) ( n % p m % p ) \binom{n}{m}=\binom{\lfloor n/p \rfloor}{\lfloor m/p \rfloor} \binom{n\%p}{m\%p} (mn)=(m/pn/p)(m%pn%p)

其中 % \% %表示取余数

这就是卢卡斯定理了

💡ひらめき:

从上述讨论,可以看出只有 m m m p p p进制表示的每一位都不大于 n n n p p p进制表示的对应位的时候, ( n m ) \binom{n}{m} (mn)才不等于 0 0 0

那么判断 ( n m ) \binom{n}{m} (mn)为奇数的充要条件也就成了 n & m = m n\&m=m n&m=m,其中 & \& &是按位与

对于更一般的情况

p p p不是素数时,就存在一个问题,上述等式虽然仍成立,但是我们在递归的终点却没法用逆元去计算 ( n m ) \binom{n}{m} (mn),那咋办呢?

这样,我把 p p p分解成若干个素数的幂,做完了之后中国剩余定理合并一下就可以了

现在的问题变成,如何计算 ( n m ) % t c \binom{n}{m}\%t^c (mn)%tc?,其中 t t t是素数

利用这个等式: n ! = ( p − 1 ) ! ⌊ n p ⌋ × ( n % p ) ! × p ⌊ n p ⌋ × ( ⌊ n p ⌋ ) ! n! = (p-1)!^{\lfloor \frac{n}{p} \rfloor} \times (n\%p)! \times p^{\lfloor \frac{n}{p} \rfloor} \times ({\lfloor \frac{n}{p} \rfloor})! n!=(p1)!pn×(n%p)!×ppn×(pn)!,便可以递归计算出 n ! , m ! , ( n − m ) ! n!,m!,(n-m)! n!,m!,(nm)! t t t的幂次,以及和 t t t互质的部分在模 t c t^c tc意义下的值,最后合并一下就好了。

代码

#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#define iinf 0x3f3f3f3f
#define linf (1ll<<60)
#define eps 1e-8
#define maxn 1000010
#define maxe 1000010
#define cl(x) memset(x,0,sizeof(x))
#define rep(_,__) for(_=1;_<=(__);_++)
#define em(x) emplace(x)
#define emb(x) emplace_back(x)
#define emf(x) emplace_front(x)
#define fi first
#define se second
#define de(x) cerr<<#x<<" = "<<x<<endl
using namespace std;
using namespace __gnu_pbds;
typedef long long ll;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
ll read(ll x=0)
{
    ll c, f(1);
    for(c=getchar();!isdigit(c);c=getchar())if(c=='-')f=-f;
    for(;isdigit(c);c=getchar())x=x*10+c-0x30;
    return f*x;
}
struct EasyMath
{
    ll prime[maxn], phi[maxn], mu[maxn];
    bool mark[maxn];
    ll fastpow(ll a, ll b, ll c)
    {
        ll t(a%c), ans(1ll);
        for(;b;b>>=1,t=t*t%c)if(b&1)ans=ans*t%c;
        return ans;
    }
    void exgcd(ll a, ll b, ll &x, ll &y)
    {
        if(!b){x=1,y=0;return;}
        ll xx, yy;
        exgcd(b,a%b,xx,yy);
        x=yy, y=xx-a/b*yy;
    }
    ll inv(ll x, ll p)  //p是素数
    {return fastpow(x%p,p-2,p);}
    ll inv2(ll a, ll p)
    {
        ll x, y;
        exgcd(a,p,x,y);
        return (x+p)%p;
    }
    void shai(ll N)
    {
        ll i, j;
        for(i=2;i<=N;i++)mark[i]=false;
        *prime=0;
        phi[1]=mu[1]=1;
        for(i=2;i<=N;i++)
        {
            if(!mark[i])prime[++*prime]=i, mu[i]=-1, phi[i]=i-1;
            for(j=1;j<=*prime and i*prime[j]<=N;j++)
            {
                mark[i*prime[j]]=true;
                if(i%prime[j]==0)
                {
                    phi[i*prime[j]]=phi[i]*prime[j];
                    break;
                }
                mu[i*prime[j]]=-mu[i];
                phi[i*prime[j]]=phi[i]*(prime[j]-1);
            }
        }
    }
    ll CRT(vector<ll> a, vector<ll> m) //要求模数两两互质
    {
        ll M=1, ans=0, n=a.size(), i;
        for(i=0;i<n;i++)M*=m[i];
        for(i=0;i<n;i++)(ans+=a[i]*(M/m[i])%M*inv2(M/m[i],m[i]))%=M;
        return ans;
    }
}em;
struct CombinatorialNumber_mod
{
    ll p[20], q[20], fact[20][maxn], tot, t[20];
    void init(ll P)
    {
        tot=0;
        ll i, j;
        for(i=2;i*i<=P;i++)
            if(P%i==0)
            {
                p[++tot]=i;
                q[tot]=0;
                while(P%i==0)q[tot]++, P/=i;
            }
        if(P>1)p[++tot]=P, q[tot]=1;
        rep(i,tot)
        {
            fact[i][0]=1;
            t[i]=1;
            rep(j,q[i])t[i]*=p[i];
            rep(j,maxn-1)
            {
                if(j%p[i]==0)fact[i][j]=fact[i][j-1];
                else fact[i][j]=fact[i][j-1]*j%t[i];
            }
        }
    }
    pll fact_mod(ll n, ll id)
    {
        if(n<p[id])return pll(0,fact[id][n]);
        pll ans = pll( n/p[id], em.fastpow(fact[id][t[id]],n/t[id],t[id]) );
        (ans.second*=fact[id][n%t[id]])%t[id];
        auto nex = fact_mod(n/p[id],id);
        ans.first+=nex.first;
        (ans.second*=nex.second)%=t[id];
        return ans;
    }
    ll exlucas(ll n, ll m, ll id)
    {
        ll cnt;
        auto a=fact_mod(n,id), b=fact_mod(m,id), c=fact_mod(n-m,id);
        a.first-=b.first+c.first;
        (a.second*=em.inv2(b.second*c.second%t[id],t[id]))%t[id];
        return em.fastpow(p[id],a.first,t[id])*a.second%t[id];
    }
    ll calc(ll n, ll m)
    {
        if(m>n or m<0 or n<0)return 0;
        vector<ll> a, v(t+1,t+tot+1);
        ll i;
        rep(i,tot)a.emb(exlucas(n,m,i));
        return em.CRT(a,v);
    }
}Cmod;
#define mod 10007ll
int main()
{
    ll n, m, T=read();
    Cmod.init(mod);
    while(T--)
    {
        n=read(), m=read();
        ll ans=Cmod.calc(n,m);
        printf("%lld\n",ans);
    }
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值