洛谷P4593 [TJOI2018]教科书般的亵渎

链接

点击跳转

题解

分析之后,发现这个题主要是解决这个问题:

∑ i = 1 n i k \sum_{i=1}^n i^k i=1nik

根据某些数学上的结论,这个东西是一个包含 n n n的最高次项为 k + 1 k+1 k+1次项的多项式

所以可以拉格朗日插值

预处理一些东西,复杂度能够做到 O ( k l o g k ) O(klogk) O(klogk)

如果不嫌麻烦写个线性筛的话,复杂度还能做到 O ( k ) O(k) O(k)

代码

#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#define iinf 0x3f3f3f3f
#define linf (1ll<<60)
#define eps 1e-8
#define maxn 1000010
#define maxe 1000010
#define cl(x) memset(x,0,sizeof(x))
#define rep(i,a,b) for(i=a;i<=b;i++)
#define drep(i,a,b) for(i=a;i>=b;i--)
#define em(x) emplace(x)
#define emb(x) emplace_back(x)
#define emf(x) emplace_front(x)
#define fi first
#define se second
#define de(x) cerr<<#x<<" = "<<x<<endl
using namespace std;
using namespace __gnu_pbds;
typedef long long ll;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
ll read(ll x=0)
{
    ll c, f(1);
    for(c=getchar();!isdigit(c);c=getchar())if(c=='-')f=-f;
    for(;isdigit(c);c=getchar())x=x*10+c-0x30;
    return f*x;
}
struct EasyMath
{
    ll prime[maxn], phi[maxn], mu[maxn], fact[maxn];
    bool mark[maxn];
    ll fastpow(ll a, ll b, ll c)
    {
        ll t(a%c), ans(1ll);
        for(;b;b>>=1,t=t*t%c)if(b&1)ans=ans*t%c;
        return ans;
    }
    void exgcd(ll a, ll b, ll &x, ll &y)
    {
        if(!b){x=1,y=0;return;}
        ll xx, yy;
        exgcd(b,a%b,xx,yy);
        x=yy, y=xx-a/b*yy;
    }
    ll inv(ll x, ll p)  //p是素数
    {return fastpow(x%p,p-2,p);}
    ll inv2(ll a, ll p)
    {
        ll x, y;
        exgcd(a,p,x,y);
        return (x+p)%p;
    }
    void shai(ll N)
    {
        ll i, j;
        for(i=2;i<=N;i++)mark[i]=false;
        *prime=0;
        phi[1]=mu[1]=1;
        for(i=2;i<=N;i++)
        {
            if(!mark[i])prime[++*prime]=i, mu[i]=-1, phi[i]=i-1;
            for(j=1;j<=*prime and i*prime[j]<=N;j++)
            {
                mark[i*prime[j]]=true;
                if(i%prime[j]==0)
                {
                    phi[i*prime[j]]=phi[i]*prime[j];
                    break;
                }
                mu[i*prime[j]]=-mu[i];
                phi[i*prime[j]]=phi[i]*(prime[j]-1);
            }
        }
    }
    ll CRT(vector<ll> a, vector<ll> m) //要求模数两两互质
    {
        ll M=1, ans=0, n=a.size(), i;
        for(i=0;i<n;i++)M*=m[i];
        for(i=0;i<n;i++)(ans+=a[i]*(M/m[i])%M*inv2(M/m[i],m[i]))%=M;
        return ans;
    }
}em;
#define mod 1000000007ll
struct Sum_of_powers_of_natural_numbers  //求\sum_{i=1}^n i^k
{
    ll _fact[maxn], inv[maxn], y[maxn], pref[maxn], suf[maxn];
    ll calc(ll n, ll k)
    {
        ll i, ans=0, m=k+1;
        n%=mod;
        inv[1]=1; rep(i,2,m)inv[i]=inv[mod%i]*(mod-mod/i)%mod;
        _fact[0]=1; rep(i,1,m)_fact[i]=_fact[i-1]*inv[i]%mod;
        rep(i,1,m)y[i]=(em.fastpow(i,k,mod)+y[i-1])%mod;//求yi可以用线性筛减少一个log
        pref[0]=n, suf[m+1]=1;
        rep(i,1,m)pref[i]=pref[i-1]*(n-i)%mod;
        drep(i,m,1)suf[i]=suf[i+1]*(n-i)%mod;
        rep(i,1,m)
        {
            ll t=pref[i-1]*suf[i+1]%mod;
            (t*=_fact[i]*_fact[m-i]%mod)%=mod;
            if(m-i&1)t=-t;
            (ans+=t*y[i]%mod)%=mod;
        }
        return ans;
    }
}spnn;
int main()
{
    ll n, m, i, j, k, ans, T=read();
    while(T--)
    {
        ans=0;
        vector<ll> v1, v2;
        n=read(), m=read();
        rep(i,1,m)
        {
            ll p=read();
            v1.emb(p); v2.emb(p+1);
        }
        sort(v1.begin(),v1.end());
        v1.erase(unique(v1.begin(),v1.end()),v1.end());
        v2.emb(1);
        sort(v2.begin(),v2.end());
        v2.erase(unique(v2.begin(),v2.end()),v2.end());
        if(v2.back()>n)v2.pop_back();
        k=v2.size();
        for(auto now:v2)
        {
            (ans+=spnn.calc(n-now+1,k))%=mod;
            for(auto x:v1)if(x>=now)(ans-=em.fastpow(x-now+1,k,mod))%=mod;
        }
        printf("%lld\n",(ans+mod)%mod);
    }
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值