nowcoder15255 白兔的游戏

链接

点击跳转

题解

第二问很好做,直接构造指数型生成函数然后分治 N T T NTT NTT即可

∏ i = 1 n ∑ j = 1 a i 1 j ! ( a i − 1 j − 1 ) x j \prod_{i=1}^{n} \sum_{j=1}^{a_i} \frac{1}{j!} \binom{a_i-1}{j-1} x^j i=1nj=1aij!1(j1ai1)xj

这个东西的 i i i次方项系数再乘以 i ! i! i!就是恰好 i i i次取完的方案数

第一问,问了 J i a n g l y \color{black}J\color{red}iangly Jiangly爷之后他告诉我这个可以归纳法做,他的解释概括如下:

不同的堆之间是独立的

每一堆先手胜的概率是 0 , 1 , 1 2 , 1 2 , 1 2 , … 0,1,\frac{1}{2},\frac{1}{2},\frac{1}{2},\dots 0,1,21,21,21,

然后两堆合并的时候先手必胜的概率就是 p ( 1 − q ) + q ( 1 − p ) p(1-q)+q(1-p) p(1q)+q(1p)

代码

#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#define iinf 0x3f3f3f3f
#define linf (1ll<<60)
#define eps 1e-8
#define maxn (524288+10)
#define cl(x) memset(x,0,sizeof(x))
#define rep(i,a,b) for(i=a;i<=b;i++)
#define em(x) emplace(x)
#define emb(x) emplace_back(x)
#define emf(x) emplace_front(x)
#define fi first
#define se second
#define de(x) cerr<<#x<<" = "<<x<<endl
using namespace std;
using namespace __gnu_pbds;
typedef long long ll;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
ll read(ll x=0)
{
    ll c, f(1);
    for(c=getchar();!isdigit(c);c=getchar())if(c=='-')f=-f;
    for(;isdigit(c);c=getchar())x=x*10+c-0x30;
    return f*x;
}
#define mod 998244353ll
struct EasyMath
{
    ll prime[maxn], phi[maxn], mu[maxn];
    bool mark[maxn];
    ll fastpow(ll a, ll b, ll c)
    {
        ll t(a%c), ans(1ll);
        for(;b;b>>=1,t=t*t%c)if(b&1)ans=ans*t%c;
        return ans;
    }
    void exgcd(ll a, ll b, ll &x, ll &y)
    {
        if(!b){x=1,y=0;return;}
        ll xx, yy;
        exgcd(b,a%b,xx,yy);
        x=yy, y=xx-a/b*yy;
    }
    ll inv(ll x, ll p)  //p是素数
    {return fastpow(x%p,p-2,p);}
    ll inv2(ll a, ll p)
    {
        ll x, y;
        exgcd(a,p,x,y);
        return (x+p)%p;
    }
    void shai(ll N)
    {
        ll i, j;
        for(i=2;i<=N;i++)mark[i]=false;
        *prime=0;
        phi[1]=mu[1]=1;
        for(i=2;i<=N;i++)
        {
            if(!mark[i])prime[++*prime]=i, mu[i]=-1, phi[i]=i-1;
            for(j=1;j<=*prime and i*prime[j]<=N;j++)
            {
                mark[i*prime[j]]=true;
                if(i%prime[j]==0)
                {
                    phi[i*prime[j]]=phi[i]*prime[j];
                    break;
                }
                mu[i*prime[j]]=-mu[i];
                phi[i*prime[j]]=phi[i]*(prime[j]-1);
            }
        }
    }
    ll CRT(vector<ll> a, vector<ll> m) //要求模数两两互质
    {
        ll M=1, ans=0, n=a.size(), i;
        for(i=0;i<n;i++)M*=m[i];
        for(i=0;i<n;i++)(ans+=a[i]*(M/m[i])%M*inv2(M/m[i],m[i]))%=M;
        return ans;
    }
}em;
struct NTT
{
    ll n, R[maxn], a[maxn], b[maxn];
    void init(ll bound)    //bound是积多项式的最高次幂
    {
        ll L(0);
        for(n=1;n<=bound;n<<=1,L++);
        for(ll i=0;i<n;i++)R[i]=(R[i>>1]>>1)|((i&1)<<(L-1)), a[i]=b[i]=0;
    }
    void ntt(ll* a, int opt)
    {
        ll i, j, k, wn, w, x, y, inv(em.fastpow(n,mod-2,mod));
        for(i=0;i<n;i++)if(i>R[i])swap(a[i],a[R[i]]);
        for(i=1;i<n;i<<=1)
        {
            if(opt==1)wn=em.fastpow(3,(mod-1)/(i<<1),mod);
            else wn=em.fastpow(3,(mod-1-(mod-1)/(i<<1)),mod);
            for(j=0;j<n;j+=i<<1)
                for(w=1,k=0;k<i;k++,w=w*wn%mod)
                {
                    x=a[k+j], y=a[k+j+i]*w%mod;
                    a[k+j]=(x+y)%mod, a[k+j+i]=(x-y)%mod;
                }
        }
        if(opt==-1)for(i=0;i<n;i++)(a[i]*=inv)%=mod;
    }
    void mult()
    {
        ntt(a,1), ntt(b,1);
        for(int i=0;i<n;i++)(a[i]*=b[i])%=mod;
        ntt(a,-1);
    }
}ntt;
ll n, a[maxn], S, fact[maxn], _fact[maxn], inv[maxn];
ll C(ll n, ll m)
{
    if(m<0 or m>n or n<0)return 0;
    return fact[n]*_fact[m]%mod*_fact[n-m]%mod;
}
vector<ll> construct(ll n)
{
    ll i;
    vector<ll> v(n+1);
    v[0]=0; rep(i,1,n)v[i]=_fact[i]*C(n-1,i-1)%mod;
    return v;
}
vector<ll> calc(ll l, ll r)
{
    if(l==r)return construct(a[l]);
    ll mid(l+r>>1), i;
    auto v1=calc(l,mid), v2=calc(mid+1,r);
    ntt.init(v1.size()+v2.size()-2);
    rep(i,0,v1.size()-1)ntt.a[i]=v1[i];
    rep(i,0,v2.size()-1)ntt.b[i]=v2[i];
    ntt.mult();
    return vector<ll>(ntt.a,ntt.a+(v1.size()+v2.size()-1));
}
int main()
{
    ll i, j, ok=0;
    
    inv[1]=1; for(int i=2;i<maxn;i++)inv[i]=inv[mod%i]*(mod-mod/i)%mod;
    fact[0]=_fact[0]=1; rep(i,1,maxn-1)fact[i]=fact[i-1]*i%mod, _fact[i]=_fact[i-1]*inv[i]%mod;
    
    n=read();
    rep(i,1,n)a[i]=read();
    
    ll mx=-1, p;
    rep(i,1,n)mx=max(mx,a[i]);

    if(mx==1)p=n&1;
    else p=mod+1>>1;

    auto v=calc(1,n);
    rep(i,0,v.size()-1)if(i&1)(ok+=fact[i]*v[i])%=mod;

    printf("%lld %lld",p,(ok+mod)%mod);

    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值