nowcoder19797 导数卷积

链接

点击跳转

题解

a n s d = ∑ i = 0 n − 1 [ x d ] ( f ( i ) f ( n − 1 − i ) ) = ∑ i = 0 n − 1 ∑ j = 0 d ( [ x j ] f ( i ) ) ( [ x ( d − j ) ] f ( n − 1 − i ) ) = ∑ i = 0 n − 1 ∑ j = 0 d ( ( j + i ) ! j ! [ x j + i ] f ( i ) ) ( ( d − j + n − 1 − i ) ! ( d − j ) ! [ x ( d − j + n − 1 − i ) ] f ( n − 1 − i ) ) = ∑ i = 0 n − 1 ∑ j = 0 d ( j + i ) ! j ! a j + i ( d − j + n − 1 − i ) ! ( d − j ) ! a d − j + n − 1 − i ) ans_d = \sum_{i=0}^{n-1} [x^d] \left ( f^{(i)}f^{(n-1-i)} \right ) \\ = \sum_{i=0}^{n-1} \sum_{j=0}^{d} \left( [x^j]f^{(i)} \right) \left( [x^{(d-j)}]f^{(n-1-i)} \right)\\ = \sum_{i=0}^{n-1} \sum_{j=0}^{d} \left( \frac{(j+i)!}{j!} [x^{j+i}]f^{(i)} \right) \left( \frac{(d-j+n-1-i)!}{(d-j)!} [x^{(d-j+n-1-i)}]f^{(n-1-i)} \right)\\ = \sum_{i=0}^{n-1} \sum_{j=0}^{d} \frac{(j+i)!}{j!} a_{j+i} \frac{(d-j+n-1-i)!}{(d-j)!} a_{d-j+n-1-i}) ansd=i=0n1[xd](f(i)f(n1i))=i=0n1j=0d([xj]f(i))([x(dj)]f(n1i))=i=0n1j=0d(j!(j+i)![xj+i]f(i))((dj)!(dj+n1i)![x(dj+n1i)]f(n1i))=i=0n1j=0dj!(j+i)!aj+i(dj)!(dj+n1i)!adj+n1i)

b i = i ! a i b_i = i!a_i bi=i!ai

则上式
= ∑ i = 0 n − 1 ∑ j = 0 d b i + j j ! b d − j + n − 1 − i ( d − j ) ! = ∑ j = 0 d j ! ( d − j ) ! ∑ i = 0 n − 1 b i + j b d − j + n − 1 − i = \sum_{i=0}^{n-1} \sum_{j=0}^{d} \frac{b_{i+j}}{j!} \frac{b_{d-j+n-1-i}}{(d-j)!} \\ = \sum_{j=0}^{d} \frac{j!}{(d-j)!} \sum_{i=0}^{n-1} b_{i+j} b_{d-j+n-1-i} =i=0n1j=0dj!bi+j(dj)!bdj+n1i=j=0d(dj)!j!i=0n1bi+jbdj+n1i

观察这个东西:

∑ i = 0 n − 1 b i + j b d − j + n − 1 − i \sum_{i=0}^{n-1} b_{i+j} b_{d-j+n-1-i} i=0n1bi+jbdj+n1i

通过分析 j = 0 , j = 1 , j = d j=0,j=1,j=d j=0,j=1,j=d,可以发现无论 j j j取什么值,这个和式的计算过程(除了首尾一些 0 0 0值外)都不变,这个值就是对多项式 b 0 + b 1 x 1 + b 2 x 2 + ⋯ + b n − 1 x n − 1 b_0+b_1x^1+b_2x^2+\dots +b_{n-1}x^{n-1} b0+b1x1+b2x2++bn1xn1平方之后得到的多项式的 n − 1 + d n-1+d n1+d次方项系数,记为 c n − 1 + d c_{n-1+d} cn1+d

那么就是求
∑ j = 0 d 1 j ! ( d − j ) ! c n − 1 − d = c n − 1 − d ∑ j = 0 d 1 j ! ( d − j ) ! \sum_{j=0}^d \frac{1}{j!(d-j)!} c_{n-1-d} = c_{n-1-d} \sum_{j=0}^d \frac{1}{j!(d-j)!} j=0dj!(dj)!1cn1d=cn1dj=0dj!(dj)!1

只需求
∑ j = 0 d 1 j ! ( d − j ) ! \sum_{j=0}^d \frac{1}{j!(d-j)!} j=0dj!(dj)!1

看到这个式子,给人一种强烈的要给分子乘以 d ! d! d!的欲望,好那我就分子乘以 d ! d! d!

那么就得到
∑ j = 0 d ( d j ) = 2 d \sum_{j=0}^d \binom{d}{j} = 2^d j=0d(jd)=2d

所以答案就是
a n s d = 2 d d ! c n − 1 + d ans_d = \frac{2^d}{d!} c_{n-1+d} ansd=d!2dcn1+d

代码

#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#define iinf 0x3f3f3f3f
#define linf (1ll<<60)
#define eps 1e-8
#define maxn (262144+10)
#define cl(x) memset(x,0,sizeof(x))
#define rep(i,a,b) for(i=a;i<=b;i++)
#define em(x) emplace(x)
#define emb(x) emplace_back(x)
#define emf(x) emplace_front(x)
#define fi first
#define se second
#define de(x) cerr<<#x<<" = "<<x<<endl
using namespace std;
using namespace __gnu_pbds;
typedef long long ll;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
ll read(ll x=0)
{
    ll c, f(1);
    for(c=getchar();!isdigit(c);c=getchar())if(c=='-')f=-f;
    for(;isdigit(c);c=getchar())x=x*10+c-0x30;
    return f*x;
}
#define mod 998244353ll
struct EasyMath
{
    ll prime[maxn], phi[maxn], mu[maxn];
    bool mark[maxn];
    ll fastpow(ll a, ll b, ll c)
    {
        ll t(a%c), ans(1ll);
        for(;b;b>>=1,t=t*t%c)if(b&1)ans=ans*t%c;
        return ans;
    }
    void exgcd(ll a, ll b, ll &x, ll &y)
    {
        if(!b){x=1,y=0;return;}
        ll xx, yy;
        exgcd(b,a%b,xx,yy);
        x=yy, y=xx-a/b*yy;
    }
    ll inv(ll x, ll p)  //p是素数
    {return fastpow(x%p,p-2,p);}
    ll inv2(ll a, ll p)
    {
        ll x, y;
        exgcd(a,p,x,y);
        return (x+p)%p;
    }
    void shai(ll N)
    {
        ll i, j;
        for(i=2;i<=N;i++)mark[i]=false;
        *prime=0;
        phi[1]=mu[1]=1;
        for(i=2;i<=N;i++)
        {
            if(!mark[i])prime[++*prime]=i, mu[i]=-1, phi[i]=i-1;
            for(j=1;j<=*prime and i*prime[j]<=N;j++)
            {
                mark[i*prime[j]]=true;
                if(i%prime[j]==0)
                {
                    phi[i*prime[j]]=phi[i]*prime[j];
                    break;
                }
                mu[i*prime[j]]=-mu[i];
                phi[i*prime[j]]=phi[i]*(prime[j]-1);
            }
        }
    }
    ll CRT(vector<ll> a, vector<ll> m) //要求模数两两互质
    {
        ll M=1, ans=0, n=a.size(), i;
        for(i=0;i<n;i++)M*=m[i];
        for(i=0;i<n;i++)(ans+=a[i]*(M/m[i])%M*inv2(M/m[i],m[i]))%=M;
        return ans;
    }
}em;
struct NTT
{
    ll n, R[maxn], a[maxn], b[maxn];
    void init(ll bound)    //bound是积多项式的最高次幂
    {
        ll L(0);
        for(n=1;n<=bound;n<<=1,L++);
        for(ll i=0;i<n;i++)R[i]=(R[i>>1]>>1)|((i&1)<<(L-1)), a[i]=b[i]=0;
    }
    void ntt(ll* a, int opt)
    {
        ll i, j, k, wn, w, x, y, inv(em.fastpow(n,mod-2,mod));
        for(i=0;i<n;i++)if(i>R[i])swap(a[i],a[R[i]]);
        for(i=1;i<n;i<<=1)
        {
            if(opt==1)wn=em.fastpow(3,(mod-1)/(i<<1),mod);
            else wn=em.fastpow(3,(mod-1-(mod-1)/(i<<1)),mod);
            for(j=0;j<n;j+=i<<1)
                for(w=1,k=0;k<i;k++,w=w*wn%mod)
                {
                    x=a[k+j], y=a[k+j+i]*w%mod;
                    a[k+j]=(x+y)%mod, a[k+j+i]=(x-y)%mod;
                }
        }
        if(opt==-1)for(i=0;i<n;i++)(a[i]*=inv)%=mod;
    }
    void mult()
    {
        ntt(a,1), ntt(b,1);
        for(int i=0;i<n;i++)(a[i]*=b[i])%=mod;
        ntt(a,-1);
    }
}ntt;
ll fact[maxn];
int main()
{
    ll n=read(), i;
    ntt.init(2*n-2);
    fact[0]=1; rep(i,1,n)fact[i]=fact[i-1]*i%mod;
    rep(i,0,n-1)ntt.a[i]=read();
    rep(i,0,n-1)ntt.a[i]=ntt.a[i]*fact[i]%mod;
    rep(i,0,n-1)ntt.b[i]=ntt.a[i];
    ntt.mult();
    rep(i,0,n-1)
    {
        ll ans=ntt.a[n-1+i]*em.fastpow(2,i,mod)%mod*em.inv(fact[i],mod)%mod;
        printf("%lld ",(ans+mod)%mod);
    }
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值