luogu P4725 【模板】多项式对数函数(多项式 ln)

链接

点击跳转

谈一些个人理解

个人感觉,这个 l n ln ln和我们在实数域中研究的 l n ln ln不是同一个东西

个人感觉,这个泰勒展开式: e A ( x ) = ∑ i = 0 ∞ ( A ( x ) ) i i ! e^{A(x)} = \sum_{i=0}^\infin \frac{(A(x))^i}{i!} eA(x)=i=0i!(A(x))i,只是因为恰好具有了某种组合数学意义,所以才被拿来用的,而 l n ( A ( x ) ) ln(A(x)) ln(A(x))也只是作为 e A ( x ) e^{A(x)} eA(x)的反函数而存在的,而因为我们使用了泰勒展开,所以实数域上的那些运算性质才能搬到形式幂级数里来用

记得实数域上学泰勒展开的时候,我们是使用拉格朗日中值定理不停的一项一项展开,拉格朗日种置定理是基于函数连续性的,而形式幂级数我们根本就不让 x x x取某些具体值,连函数值都没有何谈连续。所以我感觉实数域上的泰勒展开根这里的泰勒展开除了形式相同之外根本没有啥关系,形式幂级数中之所以还使用 e x e^x ex ln ⁡ \ln ln这套符号,可能也只是为了看着方便吧。

以上是初学者的一些理解,如有大佬持有异议可以在评论区留言

正文

B ( x ) = ln ⁡ ( A ( x ) ) B(x) = \ln (A(x)) B(x)=ln(A(x))
求导得 B ′ ( x ) = A ′ ( x ) A ( x ) B'(x) = \frac{A'(x)}{A(x)} B(x)=A(x)A(x)
所以只需要对 A ( x ) A(x) A(x)求逆,然后再和 A ( x ) A(x) A(x)的导数乘起来,然后再做不定积分(常数项给0)就行了

代码

#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#define iinf 0x3f3f3f3f
#define linf (1ll<<60)
#define eps 1e-8
#define maxn 1000010
#define maxe 1000010
#define cl(x) memset(x,0,sizeof(x))
#define rep(i,a,b) for(i=a;i<=b;i++)
#define drep(i,a,b) for(i=a;i>=b;i--)
#define em(x) emplace(x)
#define emb(x) emplace_back(x)
#define emf(x) emplace_front(x)
#define fi first
#define se second
#define de(x) cerr<<#x<<" = "<<x<<endl
using namespace std;
using namespace __gnu_pbds;
typedef long long ll;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
ll read(ll x=0)
{
    ll c, f(1);
    for(c=getchar();!isdigit(c);c=getchar())if(c=='-')f=-f;
    for(;isdigit(c);c=getchar())x=x*10+c-0x30;
    return f*x;
}
struct EasyMath
{
    ll prime[maxn], phi[maxn], mu[maxn];
    bool mark[maxn];
    ll fastpow(ll a, ll b, ll c)
    {
        ll t(a%c), ans(1ll);
        for(;b;b>>=1,t=t*t%c)if(b&1)ans=ans*t%c;
        return ans;
    }
    void exgcd(ll a, ll b, ll &x, ll &y)
    {
        if(!b){x=1,y=0;return;}
        ll xx, yy;
        exgcd(b,a%b,xx,yy);
        x=yy, y=xx-a/b*yy;
    }
    ll inv(ll x, ll p)  //p是素数
    {return fastpow(x%p,p-2,p);}
    ll inv2(ll a, ll p)
    {
        ll x, y;
        exgcd(a,p,x,y);
        return (x+p)%p;
    }
    void shai(ll N)
    {
        ll i, j;
        for(i=2;i<=N;i++)mark[i]=false;
        *prime=0;
        phi[1]=mu[1]=1;
        for(i=2;i<=N;i++)
        {
            if(!mark[i])prime[++*prime]=i, mu[i]=-1, phi[i]=i-1;
            for(j=1;j<=*prime and i*prime[j]<=N;j++)
            {
                mark[i*prime[j]]=true;
                if(i%prime[j]==0)
                {
                    phi[i*prime[j]]=phi[i]*prime[j];
                    break;
                }
                mu[i*prime[j]]=-mu[i];
                phi[i*prime[j]]=phi[i]*(prime[j]-1);
            }
        }
    }
    ll CRT(vector<ll> a, vector<ll> m) //要求模数两两互质
    {
        ll M=1, ans=0, n=a.size(), i;
        for(i=0;i<n;i++)M*=m[i];
        for(i=0;i<n;i++)(ans+=a[i]*(M/m[i])%M*inv2(M/m[i],m[i]))%=M;
        return ans;
    }
}em;
#define mod 998244353ll
struct NTT
{
    ll n, R[maxn];
    void init(ll bound)    //bound是积多项式的最高次幂
    {
        ll L(0);
        for(n=1;n<=bound;n<<=1,L++);
        for(ll i=0;i<n;i++)R[i]=(R[i>>1]>>1)|((i&1)<<(L-1));
    }
    void ntt(ll* a, int opt)
    {
        ll i, j, k, wn, w, x, y, inv(em.fastpow(n,mod-2,mod));
        for(i=0;i<n;i++)if(i>R[i])swap(a[i],a[R[i]]);
        for(i=1;i<n;i<<=1)
        {
            if(opt==1)wn=em.fastpow(3,(mod-1)/(i<<1),mod);
            else wn=em.fastpow(3,(mod-1-(mod-1)/(i<<1)),mod);
            for(j=0;j<n;j+=i<<1)
                for(w=1,k=0;k<i;k++,w=w*wn%mod)
                {
                    x=a[k+j], y=a[k+j+i]*w%mod;
                    a[k+j]=(x+y)%mod, a[k+j+i]=(x-y)%mod;
                }
        }
        if(opt==-1)for(i=0;i<n;i++)(a[i]*=inv)%=mod;
    }
}ntt;
struct Formal_Power_Series_inv
{
    ll a[maxn], b[maxn], n, A[maxn], B[maxn];
    void run()
    {
        ll i, now, N;
        ntt.init(n), N=ntt.n;
        cl(A), cl(B), cl(b);
        b[0]=em.inv(a[0],mod);
        for(now=2;now<=N;now<<=1)
        {
            rep(i,0,now-1)A[i]=a[i], B[i]=b[i];
            ntt.init(2*now-1);
            ntt.ntt(A,1), ntt.ntt(B,1);
            rep(i,0,ntt.n-1)B[i]=B[i]*B[i]%mod*A[i]%mod;
            ntt.ntt(B,-1);
            rep(i,0,now-1)b[i]=(2*b[i]-B[i])%mod;
        }
    }
}fpsi;
struct Formal_Power_series_ln
{
    ll n, a[maxn], b[maxn];
    void run()
    {
        ll i;
        fpsi.n=n;
        memcpy(fpsi.a,a,sizeof(ll)*(n+1));
        fpsi.run();
        memcpy(b,fpsi.b,sizeof(ll)*(n+1));    //b = inv(a)
        rep(i,0,n-1)a[i]=a[i+1]*(i+1)%mod; a[n]=0;  //a = a'
        ntt.init(2*n), ntt.ntt(a,1), ntt.ntt(b,1);
        rep(i,0,ntt.n-1)b[i]*=a[i]%=mod;
        ntt.ntt(b,-1);  //b = b*a
        drep(i,n,1)b[i]=b[i-1]*em.inv(i,mod)%mod; b[0]=0;   //不定积分,常数项为0
    }
}fpsln;
int main()
{
    ll i, n=read();
    fpsln.n=n-1;
    rep(i,0,n-1)fpsln.a[i]=read();
    fpsln.run();
    rep(i,0,n-1)printf("%lld ",(fpsln.b[i]+mod)%mod);
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值