泉州市信息学线上测试活动提高组(一) 烷烃命名

链接

点击跳转

感想

写了一下午终于通过了,用一句有点中二的话来表达我此刻的心情:

これが、我々の勝利!

好了下面正经点

题解

第一步找直径,我们要找的是那种支链最多的直径。我问了计蒜客管理员,他说这题数据不存在支链数相同的情况。

出题人的做法是找直径的时候把支链数作为第二关键字,这个做法固然很神,但是不好推广。

我的做法比较麻烦,但是容易推广,下面讲讲我的做法:

首先要明白一点,当直径上的点有奇数个时,所有直径都经过一个公共点,且这个公共点是所有直径的中点。当直径上的点有偶数个,那么所有直径都经过一条公共边,且这个公共边就是所有直径最中间那条边(此时直径的边数是奇数所以存在最中间的边)。

当直径上的点数是奇数时:

我找到中心点 t t t,然后以 t t t为根节点建树,此时我只需要在每棵子树选出深度最大的点,这些点当中再取到根节点支链数最多的那个。每棵子树这样的点我拿出来,然后以支链数为关键字排序,取支链数最大的两个,这就是满足条件的直径了。

当直径上的点数是偶数时:

这个时候中心边是 ( a , b ) (a,b) (a,b),这条边把树分成两个部分,一个部分以 a a a为根节点,另一个部分以 b b b为根节点

分别建立有根树,分别在每棵树深度最大的点中取出支链数最多的那个。两棵子树得到两个这样的点,这两个点所对应的路径就是答案。

其余部分想必很容易处理,这里就不多做解释了

代码

#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#define iinf 0x3f3f3f3f
#define linf (1ll<<60)
#define eps 1e-8
#define maxn 1000010
#define maxe 1000010
#define cl(x) memset(x,0,sizeof(x))
#define rep(i,a,b) for(i=a;i<=b;i++)
#define drep(i,a,b) for(i=a;i>=b;i--)
#define em(x) emplace(x)
#define emb(x) emplace_back(x)
#define emf(x) emplace_front(x)
#define fi first
#define se second
#define de(x) cerr<<#x<<" = "<<x<<endl
using namespace std;
using namespace __gnu_pbds;
typedef long long ll;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
ll read(ll x=0)
{
    ll c, f(1);
    for(c=getchar();!isdigit(c);c=getchar())if(c=='-')f=-f;
    for(;isdigit(c);c=getchar())x=x*10+c-0x30;
    return f*x;
}
ll n, deg[maxn], cnt[maxn], belong[maxn];
vector<ll> tong[maxn];
struct Graph
{
    int etot, head[maxn], to[maxe], next[maxe], w[maxe];
    void clear(int N)
    {
        for(int i=1;i<=N;i++)head[i]=0;
        etot=0;
    }
    void adde(int a, int b, int c=0){to[++etot]=b;w[etot]=c;next[etot]=head[a];head[a]=etot;}
    #define forp(_,__) for(int p=__.head[_];p;p=__.next[p])
}G;
struct Easy_Tree
{
    int depth[maxn], dist[maxn], tid[maxn], rtid[maxn], tim, size[maxn], rev[maxn], fa[maxn];
    void dfs(int pos, int pre, Graph& G)
    {
        fa[pos]=pre;
        tid[pos]=++tim;
        rev[tid[pos]]=pos;
        size[pos]=1;
        forp(pos,G)if(G.to[p]!=pre)
        {
            depth[G.to[p]]=depth[pos]+1;
            dist[G.to[p]]=dist[pos]+G.w[p];
            dfs(G.to[p],pos,G);
            size[pos]+=size[G.to[p]];
        }
        rtid[pos]=tim;
    }
    void run(Graph& G, int root)
    {
        tim=0;
        depth[root]=1;
        dfs(root,0,G);
    }
}et;
void dfs(ll u, ll fa, ll now)
{
    cnt[u] = cnt[fa] + max(0ll,deg[u]-2);
    belong[u] = now;
    forp(u,G)
    {
        ll v(G.to[p]); if(v==fa)continue;
        if(now==0)dfs(v,u,v);
        else dfs(v,u,now);
    }
}
#define mod 998244353ll
vector<pll> lis;
bool cmp(ll a, ll b){return cnt[a]>cnt[b];}
int main()
{
    freopen("chemistry.in","r",stdin);
    freopen("chemistry.out","w",stdout);
    ll mxi, i;
    n = read();
    rep(i,1,n-1)
    {
        ll u=read(), v=read();
        G.adde(u,v), G.adde(v,u);
        deg[u]++, deg[v]++;
    }
    et.run(G,1);
    mxi=1;
    rep(i,2,n)if(et.depth[i]>et.depth[mxi])mxi=i;
    de(mxi);
    et.run(G,mxi);
    ll mx=-1, ed;
    rep(i,1,n)mx=max(mx,(ll)et.depth[i]);
    rep(i,1,n)if(et.depth[i]==mx)ed=i;  //随便找一条直径
    ll A, B;
    if(mx%2==0)    //所有直径有一条公共边
    {
        ll t=ed, res=mx/2-1;
        while(res--)t=et.fa[t]; //(t,fa[t])就是这条公共边
        ll a=t, b=et.fa[t];
        et.depth[a] = et.depth[b] = 1;
        et.dfs(a,b,G), et.dfs(b,a,G);
        dfs(a,b,a), dfs(b,a,b);
        vector<ll> v1, v2;
        rep(i,1,n)if(et.depth[i]==mx/2)
        {
            if(belong[i]==a)v1.push_back(i);
            else v2.push_back(i);
        }
        sort(v1.begin(),v1.end(),cmp);
        sort(v2.begin(),v2.end(),cmp);
        A = v1[0], B = v2[0];
    }
    else    //所有直径有一个公共点
    {
        ll t=ed, res=mx/2;
        vector<ll> v0;
        while(res--)t=et.fa[t]; //t就是这个公共点
        de(t);
        dfs(t,0,0);
        et.run(G,t);
        rep(i,1,n)if(et.depth[i]==mx/2+1)tong[belong[i]].push_back(i);
        rep(i,1,n)
        {
            sort(tong[i].begin(),tong[i].end(),cmp);
            if(!tong[i].empty())v0.push_back(tong[i].at(0));
        }
        sort(v0.begin(),v0.end(),cmp);
        A = v0[0], B = v0[1];
    }
    //经过以上过程,主链AB已求出
    
    et.run(G,A);
    ll t = B, L = et.depth[B];  //L是主链长度
    ll ans=0, pre=0;
    ll tot=0;
    t = B;
    while(t!=A)
    {
        forp(t,G)
        {
            ll v(G.to[p]);
            if(v==et.fa[t] or v==pre)continue;
            lis.push_back( pll(et.size[v],et.depth[t]) );
        }
        pre = t;
        t = et.fa[t];
    }
    sort(lis.begin(),lis.end());
    pll p1, p2;
    p1=pll(0,linf), p2=pll(0,-linf);
    rep(i,0,lis.size()-1ll)
    {
        if(lis[i].se<p1.se or lis[i].se==p1.se and lis[i].fi<p1.fi)p1=lis[i];
        if(lis[i].se>p2.se or lis[i].se==p2.se and lis[i].fi<p2.fi)p2=lis[i];
    }
    if(p1.se<L-p2.se+1 or p1.se==L-p2.se+1 and p1.fi<p2.fi)
    {
        rep(i,0,lis.size()-1ll)
            (ans+=(i+1)*lis[i].fi*lis[i].se)%=mod;
    }
    else
    {
        rep(i,0,lis.size()-1ll)lis[i].se = L-lis[i].se+1;
        sort(lis.begin(),lis.end());
        rep(i,0,lis.size()-1ll)(ans+=(i+1)*lis[i].fi*lis[i].se)%=mod;
    }
    printf("%lld\n%lld",ans,L);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值