bzoj3456 城市规划

题解

f i f_i fi表示 i i i个点的无向图的数目,那么 f i = 2 i ( i − 1 ) / 2 f_i = 2^{i(i-1)/2} fi=2i(i1)/2

g i g_i gi表示 i i i个点的联通无向图的数目

那么,我枚举 1 1 1所在的连通块的大小,就得到以下递推式

f i = ∑ j = 1 i ( i − 1 j − 1 ) g j f i − j f_i = \sum_{j=1}^i \binom{i-1}{j-1} g_j f_{i-j} fi=j=1i(j1i1)gjfij

化简,得到

f i ( i − 1 ) ! = ∑ j = 1 i g j ( j − 1 ) ! f i − j ( i − j ) ! \frac{f_i}{(i-1)!} = \sum_{j=1}^{i} \frac{g_j}{(j-1)!} \frac{f_{i-j}}{(i-j)!} (i1)!fi=j=1i(j1)!gj(ij)!fij

构造多项式

F ( x ) = ∑ i = 0 ∞ f i i ! x i H ( x ) = ∑ i = 1 ∞ f i ( i − 1 ) ! x i G ( x ) = ∑ i = 1 ∞ g i ( i − 1 ) ! F(x) = \sum_{i=0}^\infin \frac{f_i}{i!}x^i \\ H(x) = \sum_{i=1}^\infin \frac{f_i}{(i-1)!}x^i \\ G(x) = \sum_{i=1}^\infin \frac{g_i}{(i-1)!} F(x)=i=0i!fixiH(x)=i=1(i1)!fixiG(x)=i=1(i1)!gi


H ( x ) = F ( x ) G ( x ) H(x) = F(x)G(x) H(x)=F(x)G(x)

所以 G ( x ) = H ( x ) F ( x ) G(x) = \frac{H(x)}{F(x)} G(x)=F(x)H(x)

代码

#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#define iinf 0x3f3f3f3f
#define linf (1ll<<60)
#define eps 1e-8
#define maxn 1000010
#define maxe 1000010
#define cl(x) memset(x,0,sizeof(x))
#define rep(i,a,b) for(i=a;i<=b;i++)
#define drep(i,a,b) for(i=a;i>=b;i--)
#define em(x) emplace(x)
#define emb(x) emplace_back(x)
#define emf(x) emplace_front(x)
#define fi first
#define se second
#define de(x) cerr<<#x<<" = "<<x<<endl
using namespace std;
using namespace __gnu_pbds;
typedef long long ll;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
ll read(ll x=0)
{
    ll c, f(1);
    for(c=getchar();!isdigit(c);c=getchar())if(c=='-')f=-f;
    for(;isdigit(c);c=getchar())x=x*10+c-0x30;
    return f*x;
}
struct EasyMath
{
    ll prime[maxn], phi[maxn], mu[maxn];
    bool mark[maxn];
    ll fastpow(ll a, ll b, ll c)
    {
        ll t(a%c), ans(1ll);
        for(;b;b>>=1,t=t*t%c)if(b&1)ans=ans*t%c;
        return ans;
    }
    void exgcd(ll a, ll b, ll &x, ll &y)
    {
        if(!b){x=1,y=0;return;}
        ll xx, yy;
        exgcd(b,a%b,xx,yy);
        x=yy, y=xx-a/b*yy;
    }
    ll inv(ll x, ll p)  //p是素数
    {return fastpow(x%p,p-2,p);}
    ll inv2(ll a, ll p)
    {
        ll x, y;
        exgcd(a,p,x,y);
        return (x+p)%p;
    }
    void shai(ll N)
    {
        ll i, j;
        for(i=2;i<=N;i++)mark[i]=false;
        *prime=0;
        phi[1]=mu[1]=1;
        for(i=2;i<=N;i++)
        {
            if(!mark[i])prime[++*prime]=i, mu[i]=-1, phi[i]=i-1;
            for(j=1;j<=*prime and i*prime[j]<=N;j++)
            {
                mark[i*prime[j]]=true;
                if(i%prime[j]==0)
                {
                    phi[i*prime[j]]=phi[i]*prime[j];
                    break;
                }
                mu[i*prime[j]]=-mu[i];
                phi[i*prime[j]]=phi[i]*(prime[j]-1);
            }
        }
    }
    ll CRT(vector<ll> a, vector<ll> m) //要求模数两两互质
    {
        ll M=1, ans=0, n=a.size(), i;
        for(i=0;i<n;i++)M*=m[i];
        for(i=0;i<n;i++)(ans+=a[i]*(M/m[i])%M*inv2(M/m[i],m[i]))%=M;
        return ans;
    }
}em;
#define mod 1004535809ll
struct NTT
{
    ll n;
    vector<ll> R;
    void init(ll bound)    //bound是积多项式的最高次幂
    {
        ll L(0);
        for(n=1;n<=bound;n<<=1,L++);
        R.resize(n);
        for(ll i=0;i<n;i++)R[i]=(R[i>>1]>>1)|((i&1)<<(L-1));
    }
    void ntt(vector<ll>& a, int opt)
    {
        ll i, j, k, wn, w, x, y, inv(em.fastpow(n,mod-2,mod));
        for(i=0;i<n;i++)if(i>R[i])swap(a[i],a[R[i]]);
        for(i=1;i<n;i<<=1)
        {
            if(opt==1)wn=em.fastpow(3,(mod-1)/(i<<1),mod);
            else wn=em.fastpow(3,(mod-1-(mod-1)/(i<<1)),mod);
            for(j=0;j<n;j+=i<<1)
                for(w=1,k=0;k<i;k++,w=w*wn%mod)
                {
                    x=a[k+j], y=a[k+j+i]*w%mod;
                    a[k+j]=(x+y)%mod, a[k+j+i]=(x-y)%mod;
                }
        }
        if(opt==-1)for(i=0;i<n;i++)(a[i]*=inv)%=mod;
    }
};
struct Poly
{
    vector<ll> v;
    ll n;	//n是最高次项的次数
    Poly(ll N){v.resize(N+1);n=N;}
    Poly(const Poly& p){v=p.v; n=p.n;}
    void resize(ll N){n=N; v.resize(N+1);}
    ll& operator[](ll id){return v[id];}
    void show()
    {
        printf("n=%lld\n",n);
        ll i; rep(i,0,n-1)printf("%lldx^%lld + ",(v[i]+mod)%mod,i);
        printf("%lldx^%lld\n",(v[n]+mod)%mod,n);
    }
};
Poly operator+(Poly A, Poly B)
{
    ll i;
    Poly C(max(A.n,B.n));
	A.resize(C.n), B.resize(C.n);
    rep(i,0,C.n)C[i]=A[i]+B[i];
    return C;
}
Poly operator*(ll x, Poly A)
{
    x%=mod;
    ll i; rep(i,0,A.n)(A[i]*=x)%=mod;
    return A;
}
Poly operator*(Poly A, Poly B)
{
    NTT ntt;
    ll i, n=A.n+B.n;
    ntt.init(A.n+B.n);
    A.resize(ntt.n-1), B.resize(ntt.n-1);
    ntt.ntt(A.v,1), ntt.ntt(B.v,1);
    Poly C(ntt.n-1);
    rep(i,0,C.n)C[i]=(A[i]*B[i])%mod;
    ntt.ntt(C.v,-1);
    C.resize(n);
    return C;
}
Poly operator~(Poly F)
{
    Poly H(0), f(0);
    ll i, j;
    H[0]=em.inv(F[0],mod);
    for(i=1;(i>>1)<=F.n;i*=2)
    {
        f.resize(i-1);
        rep(j,0,min(i-1,F.n))f[j]=F[j];
        Poly t=H*H*f; t.resize(i-1);
        H=2*H+(-1)*t;
    }
    H.resize(F.n);
    return H;
}
int main()
{
    ll n=read(), i;
    vector<ll> fact(n+5);
    Poly F(n), H(n), one(0);
    fact[0]=1; rep(i,1,n)fact[i]=fact[i-1]*i%mod;
    rep(i,0,n)
    {
        ll t = em.fastpow(2,i*(i-1)/2,mod);
        F[i] = t * em.inv(fact[i],mod) %mod;
        if(i>0)H[i] = t * em.inv(fact[i-1],mod) %mod;
    }
    one[0]=1;
    auto G = H*~F;
    printf("%lld",(G[n]*fact[n-1]%mod+mod)%mod);
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值