链接
题解
判断一个串是否是另一个串的子串用 k m p kmp kmp
然后有一个优化就是,如果我在暴力匹配的过程中发现 A A A是 B B B的子串,那么我可以以后不再匹配 A A A这个串
因为一个后面的串假设是 C C C,我只需要判断是不是所有前面的串都是 C C C的子串。如果 A A A不是 C C C的子串,那么 B B B肯定也不是,所以我完全可以不用去判断 A A A了
复杂度是这样的:
因为我每次第一次匹配失败就会 b r e a k break break,所以在失配的串上话的时间为 O ( 单 个 串 串 长 ) O(单个串串长) O(单个串串长)。而如果匹配成功,就会删掉一个串,所以匹配成功的串上面花费的总时间是 O ( 总 串 长 ) O(总串长) O(总串长)的
代码
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#define iinf 0x3f3f3f3f
#define linf (1ll<<60)
#define eps 1e-8
#define maxn 1000010
#define maxe 1000010
#define cl(x) memset(x,0,sizeof(x))
#define rep(i,a,b) for(i=a;i<=b;i++)
#define drep(i,a,b) for(i=a;i>=b;i--)
#define em(x) emplace(x)
#define emb(x) emplace_back(x)
#define emf(x) emplace_front(x)
#define fi first
#define se second
#define de(x) cerr<<#x<<" = "<<x<<endl
using namespace std;
using namespace __gnu_pbds;
typedef long long ll;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
ll read(ll x=0)
{
ll c, f(1);
for(c=getchar();!isdigit(c);c=getchar())if(c=='-')f=-f;
for(;isdigit(c);c=getchar())x=x*10+c-0x30;
return f*x;
}
struct KMP //所有传进的字符串都要封尾(len+1的位置放一个0)
{
int n, next[maxn], t[maxn];
void clear()
{
cl(next), n=0;
}
void build(int *r, int len)
{
int i, j=0;
n=len;
for(i=1;i<=len;i++)t[i]=r[i]; t[len+1]=0;
for(i=2;i<=len;i++)
{
for(;j and t[j+1]!=t[i];j=next[j]);
next[i] = t[j+1]==t[i]?++j:0;
}
}
int move(int pos, int x)
{
for(;pos and t[pos+1]!=x;pos=next[pos]);
return t[pos+1]==x ? pos+1 : 0;
}
}kmp;
char str[510][2020];
int r[maxn];
int main()
{
ll T=read(), kase;
rep(kase,1,T)
{
ll n=read(), i, j, k, ans=-1, mx=0;
vector<ll> len(n+5), die(n+5);
rep(i,1,n)
{
scanf("%s",str[i]+1);
len[i]=strlen(str[i]+1);
if(mx>len[i])
{
ans=i;
continue;
}
rep(j,1,i-1)
{
if(die[j])continue;
rep(k,1,len[j])r[k]=str[j][k]; r[len[j]+1]='|';
rep(k,1,len[i])r[len[j]+1+k]=str[i][k];
kmp.build(r,len[i]+len[j]+1);
ll t=-1;
rep(k,1,len[i])t=max(t,(ll)kmp.next[len[j]+1+k]);
if(t<len[j])break;
else die[j]=1;
}
if(j<=i-1)ans=i;
mx = max(mx,len[i]);
}
printf("Case #%lld: %lld\n",kase,ans);
}
return 0;
}