牛客19940 [CQOI2015]选数

链接

点击跳转

题解

问题转化成在区间 [ ⌈ L K ⌉ , ⌊ R K ⌋ ] \left[ \lceil \frac{L}{K} \rceil, \lfloor \frac{R}{K} \rfloor \right] [KL,KR]中有放回地抽取 N N N次数字,使得抽出来的数字的 g c d = 1 gcd=1 gcd=1的方案数

注意到一个性质:从一个区间里面抽取两个不同的数字,最大公约数不会超过区间长度。因为最大公约数如果是 g g g,那么两个数都是 g g g的倍数,这两个数的距离不会小于 g g g。如果 g g g超过区间长度,那么一定没法在这个区间同时抽到。

f ( i ) f(i) f(i)表示从区间里面抽取不全相同的 n n n个数字,最大公约数恰好等于 i i i的方案数

根据上面所述的性质,如果 i i i大于区间长度,就知道 f ( i ) = 1 f(i)=1 f(i)=1。否则我可以先算出“抽取不全相同的数字,最大公约数是i的倍数”的方案数,然后再减去 f ( 2 i ) , f ( 3 i ) , f ( 4 i ) , . . . f(2i),f(3i),f(4i),... f(2i),f(3i),f(4i),...

答案就是 f ( 1 ) + [ ⌈ L K ⌉ = 1 ] f(1)+[\lceil \frac{L}{K} \rceil=1] f(1)+[KL=1]

如果去掉区间长度的限制

如果去掉 R − L + 1 ≤ 1 0 5 R-L+1 \le 10^5 RL+1105这个条件,这个题怎么做?

∑ i = 1 ∞ μ ( i ) ( ⌊ R i ⌋ − ⌊ L − 1 i ⌋ ) n \sum_{i=1}^\infin \mu(i) ( \lfloor \frac{R}{i} \rfloor - \lfloor \frac{L-1}{i} \rfloor )^n i=1μ(i)(iRiL1)n

观察式子发现当 i > R i>R i>R的时候第二个括号里面的东西是 0 0 0

所以只需计算

∑ i = 1 R μ ( i ) ( ⌊ R i ⌋ − ⌊ L − 1 i ⌋ ) n \sum_{i=1}^R \mu(i) ( \lfloor \frac{R}{i} \rfloor - \lfloor \frac{L-1}{i} \rfloor )^n i=1Rμ(i)(iRiL1)n

两次杜教筛就可以了,第一次计算 S ( ⌊ R i ⌋ ) S(\lfloor \frac{R}{i} \rfloor) S(iR),第二次计算 S ( ⌊ L − 1 i ⌋ ) S(\lfloor \frac{L-1}{i} \rfloor) S(iL1)

这个方法我没写代码

代码

#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#define iinf 0x3f3f3f3f
#define linf (1ll<<60)
#define eps 1e-8
#define maxn 1000010
#define maxe 1000010
#define cl(x) memset(x,0,sizeof(x))
#define rep(i,a,b) for(i=a;i<=b;i++)
#define drep(i,a,b) for(i=a;i>=b;i--)
#define em(x) emplace(x)
#define emb(x) emplace_back(x)
#define emf(x) emplace_front(x)
#define fi first
#define se second
#define de(x) cerr<<#x<<" = "<<x<<endl
using namespace std;
using namespace __gnu_pbds;
typedef long long ll;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
ll read(ll x=0)
{
    ll c, f(1);
    for(c=getchar();!isdigit(c);c=getchar())if(c=='-')f=-f;
    for(;isdigit(c);c=getchar())x=x*10+c-0x30;
    return f*x;
}
struct EasyMath
{
    ll prime[maxn], phi[maxn], mu[maxn];
    bool mark[maxn];
    ll fastpow(ll a, ll b, ll c)
    {
        ll t(a%c), ans(1ll);
        for(;b;b>>=1,t=t*t%c)if(b&1)ans=ans*t%c;
        return ans;
    }
    void exgcd(ll a, ll b, ll &x, ll &y)
    {
        if(!b){x=1,y=0;return;}
        ll xx, yy;
        exgcd(b,a%b,xx,yy);
        x=yy, y=xx-a/b*yy;
    }
    ll inv(ll x, ll p)  //p是素数
    {return fastpow(x%p,p-2,p);}
    ll inv2(ll a, ll p)
    {
        ll x, y;
        exgcd(a,p,x,y);
        return (x+p)%p;
    }
    void shai(ll N)
    {
        ll i, j;
        for(i=2;i<=N;i++)mark[i]=false;
        *prime=0;
        phi[1]=mu[1]=1;
        for(i=2;i<=N;i++)
        {
            if(!mark[i])prime[++*prime]=i, mu[i]=-1, phi[i]=i-1;
            for(j=1;j<=*prime and i*prime[j]<=N;j++)
            {
                mark[i*prime[j]]=true;
                if(i%prime[j]==0)
                {
                    phi[i*prime[j]]=phi[i]*prime[j];
                    break;
                }
                mu[i*prime[j]]=-mu[i];
                phi[i*prime[j]]=phi[i]*(prime[j]-1);
            }
        }
    }
    ll CRT(vector<ll> a, vector<ll> m) //要求模数两两互质
    {
        ll M=1, ans=0, n=a.size(), i;
        for(i=0;i<n;i++)M*=m[i];
        for(i=0;i<n;i++)(ans+=a[i]*(M/m[i])%M*inv2(M/m[i],m[i]))%=M;
        return ans;
    }
}em;
ll f[maxn];
#define mod 1000000007ll
int main()
{
    ll N=read(), K=read(), L=read(), R=read(), i, ans=0, j;
    L = L/K + !!(L%K);
    R = R/K;
    drep(i,R-L+1,1)
    {
        ll x = R/i-(L-1)/i; 
        f[i] = ( em.fastpow( x, N, mod) - x )%mod;
        for(j=i+i;j<=R-L+1;j+=i)(f[i]-=f[j])%=mod;
    }
    ans = (f[1] + (L==1) + mod)%mod;
    printf("%lld",ans);
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值