bzoj3262: 陌上花开

链接

  http://www.lydsy.com/JudgeOnline/problem.php?id=3262

题解

  第一道CDQ分治。
  第三维 z 这一维可以被分治掉,考虑怎样合并相邻的两个区域。
  将所有的点按照zxy的顺序排序,那么当 z 被分治掉之后,只需考虑剩下的两维。用两个指针i j 分别在两个相邻区域中扫,因为考虑的是i区域对 j 区域的影响,因此将i区域和 j 区域的点重新排序(按照xy的顺序)。 j 顺序扫表,每扫到一个新的横坐标,就将i区域内的横坐标不大于 j 点横坐标的点的纵坐标加入BIT,查询直接查即可。
  注意有些点是长得完全一样的,要合并处理。
  一个问题:显然 BIT 每次使用之前都要初始化,如果每次都 O(K) 初始化的话,初始化的时间复杂度就是 O(KNlogN)
  如果改为每次把加进去的点删掉,那么初始化的时间复杂度是 O(NlogK)
  整个算法的时间复杂度:
  一共 logN 层,每层中N个点都要被搞一次,所以时间复杂度是 O(NlogNlogK)

代码

//cdq分治+树状数组 
#include <cstdio>
#include <algorithm>
#define maxn 200010
#define lowbit(x) (x&-x)
using namespace std;
struct quiry{int x, y, z, cnt, ans;}q[maxn];
int bit[maxn], N, K, tong[maxn], tmp;
inline void add(int pos, int v){for(;pos<=K;pos+=lowbit(pos))bit[pos]+=v;}
inline int sum(int pos)
{
    int ans=0;
    for(;pos;pos-=lowbit(pos))ans+=bit[pos];
    return ans;
}
inline bool operator<(quiry a, quiry b)
{
    if(a.z==b.z)
    {
        if(a.x==b.x)return a.y<b.y;
        else return a.x<b.x;
    }
    return a.z<b.z;
}
inline bool cmp(quiry a, quiry b){return a.x==b.x?a.y<b.y:a.x<b.x;}
inline int read(int x=0)
{
    char c=getchar();
    while(c<48 or c>57)c=getchar();
    while(c>=48 and c<=57)x=(x<<1)+(x<<3)+c-48,c=getchar();
    return x;
}
void init()
{
    int i, x=0;
    N=read(), K=read();
    for(i=1;i<=N;i++)q[i].x=read(), q[i].y=read(), q[i].z=read(), q[i].cnt=1;
    sort(q+1,q+N+1);
    for(i=1;i<=N;i++)
        if(q[i].x!=q[i-1].x or q[i].y!=q[i-1].y or q[i].z!=q[i-1].z)q[++x]=q[i];
        else q[x].cnt++;
    tmp=N,N=x;
    for(i=1;i<=N;i++)q[i].ans+=q[i].cnt-1;
}
void solve(int l, int r)
{
    int mid=(l+r)>>1, i, j;
    if(l==r)return;
    solve(l,mid), solve(mid+1,r);
    sort(q+l,q+mid+1,cmp), sort(q+mid+1,q+r+1,cmp);
    for(i=l,j=mid+1;j<=r;j++)
    {
        for(;q[i].x<=q[j].x and i<=mid;i++)add(q[i].y,q[i].cnt);
        q[j].ans+=sum(q[j].y);
    }
    for(i=l;i<=mid and q[i].x<=q[r].x;i++)add(q[i].y,-q[i].cnt);
}
void show()
{
    int i;
    for(i=1;i<=N;i++)tong[q[i].ans]+=q[i].cnt;
    for(i=0;i<tmp;i++)printf("%d\n",tong[i]);
}
int main()
{
    init();
    solve(1,N);
    show();
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值