链接
http://www.lydsy.com/JudgeOnline/problem.php?id=3262
题解
第一道CDQ分治。
第三维
z
这一维可以被分治掉,考虑怎样合并相邻的两个区域。
将所有的点按照
注意有些点是长得完全一样的,要合并处理。
一个问题:显然
BIT
每次使用之前都要初始化,如果每次都
O(K)
初始化的话,初始化的时间复杂度就是
O(KNlogN)
。
如果改为每次把加进去的点删掉,那么初始化的时间复杂度是
O(NlogK)
。
整个算法的时间复杂度:
一共
logN
层,每层中N个点都要被搞一次,所以时间复杂度是
O(NlogNlogK)
代码
//cdq分治+树状数组
#include <cstdio>
#include <algorithm>
#define maxn 200010
#define lowbit(x) (x&-x)
using namespace std;
struct quiry{int x, y, z, cnt, ans;}q[maxn];
int bit[maxn], N, K, tong[maxn], tmp;
inline void add(int pos, int v){for(;pos<=K;pos+=lowbit(pos))bit[pos]+=v;}
inline int sum(int pos)
{
int ans=0;
for(;pos;pos-=lowbit(pos))ans+=bit[pos];
return ans;
}
inline bool operator<(quiry a, quiry b)
{
if(a.z==b.z)
{
if(a.x==b.x)return a.y<b.y;
else return a.x<b.x;
}
return a.z<b.z;
}
inline bool cmp(quiry a, quiry b){return a.x==b.x?a.y<b.y:a.x<b.x;}
inline int read(int x=0)
{
char c=getchar();
while(c<48 or c>57)c=getchar();
while(c>=48 and c<=57)x=(x<<1)+(x<<3)+c-48,c=getchar();
return x;
}
void init()
{
int i, x=0;
N=read(), K=read();
for(i=1;i<=N;i++)q[i].x=read(), q[i].y=read(), q[i].z=read(), q[i].cnt=1;
sort(q+1,q+N+1);
for(i=1;i<=N;i++)
if(q[i].x!=q[i-1].x or q[i].y!=q[i-1].y or q[i].z!=q[i-1].z)q[++x]=q[i];
else q[x].cnt++;
tmp=N,N=x;
for(i=1;i<=N;i++)q[i].ans+=q[i].cnt-1;
}
void solve(int l, int r)
{
int mid=(l+r)>>1, i, j;
if(l==r)return;
solve(l,mid), solve(mid+1,r);
sort(q+l,q+mid+1,cmp), sort(q+mid+1,q+r+1,cmp);
for(i=l,j=mid+1;j<=r;j++)
{
for(;q[i].x<=q[j].x and i<=mid;i++)add(q[i].y,q[i].cnt);
q[j].ans+=sum(q[j].y);
}
for(i=l;i<=mid and q[i].x<=q[r].x;i++)add(q[i].y,-q[i].cnt);
}
void show()
{
int i;
for(i=1;i<=N;i++)tong[q[i].ans]+=q[i].cnt;
for(i=0;i<tmp;i++)printf("%d\n",tong[i]);
}
int main()
{
init();
solve(1,N);
show();
return 0;
}