原题
已知函数
f(x)=(x−2)ex+a(x−1)2
有两个零点
(1) 求
a
的取值范围
(2) 设
第一问
求导
f′(x)=(ex+2a)(x−1)
(i)若
a>0
这个时候函数先单调减后单调增,极小值
f(1)=−e<0
秘技:反复横跳 取
b
满足
答案玩的太炫酷了,原来这就是全国卷啊。
右边就很好找了,直接令
所以说
a>0
时有两个零点
(ii)
a=0
这个时候
f(x)=ex(x−1)
,只有一个零点
(iii)
a<0
设
x0=ln(−2a)
,则
x0
和
1
是
如果
x0≤1
,根据
x≤1
时
f(x)<0
和增-减-增的图像,可知此时
f(x)
的零点个数少于两个
如果
x0>1
,根据
x≤1
时
f(x)<0
和增-减-增的图像,可知此时零点个数少于两个
综上
a>0
吐槽:太丧病了,我全程看答案
第二问
不妨设
x1<1,x2>1
x1+x2<2
即
x1<2−x2
此时
x1,2−x2∈(−∞,1)
由于在
(−∞,1)
上函数是单调递减的
就成了证明
f(x1)=0>f(2−x2)
f(2−x2)=−x2e2−x2+a(x2−1)2
f(x2)=(x2−2)ex2+a(x2−1)2=0
消掉
a
,得到
令
g(x)=−e2x−xe2x+2e2x
g′(x)=−e2+(1−2x)e2x
g′′(x)=−4xe2x
显然
g′(0)=g′(x)max=−e2+1<0
所以
g(x)
单调递减,而
g(1)=0
,所以当
x>1
时,
g(x)<0
,即
f(2−x2)<0=f(x1)
这样就证完了