Codeforces Round #552 (Div. 3) G. Minimum Possible LCM

链接

https://codeforces.com/contest/1154/problem/G

题解

l c m ( a , b ) = a b ( a , b ) lcm(a,b)=\frac{ab}{(a,b)} lcm(a,b)=(a,b)ab
显然 a a a b b b都是 ( a , b ) (a,b) (a,b)的倍数
开一个权值数组,记录每种大小的数字分别有几个
然后我枚举分母 g g g,去遍历 g g g的倍数,最小的两个作为分子
输出方案确实比较费事…

代码

#include <bits/stdc++.h>
#define eps 1e-8
#define iinf 0x3f3f3f3f
#define linf (1ll<<60)
#define cl(x) memset(x,0,sizeof(x))
#define mod 1000000007ll
#define maxn 10000010
using namespace std;
typedef long long ll;
ll read(ll x=0)
{
	int c, f=1;
	for(c=getchar();!isdigit(c);c=getchar())if(c=='-')f=-f;
	for(;isdigit(c);c=getchar())x=x*10+c-48;
	return f*x;
}
ll cnt[maxn], N, a[maxn], id[maxn];
bool cmp(ll x, ll y){return a[x]<a[y];}
int main()
{
	ll i, res, g, lastg;
	vector<ll> ans, num, out;
	N=read();
	for(i=1;i<=N;i++)
	{
		a[i]=read();
		cnt[a[i]]++;
		id[i]=i;
	}
	for(g=1;g<maxn;g++)
	{
		num.clear();
		for(i=g;i<maxn and num.size()<2;i+=g)
		{

			if(num.size()==1)
			{
				if(cnt[i])
				{
					num.push_back(i);
				}
			}
			else
			{
				if(cnt[i]==1)
				{
					num.push_back(i);
				}
				else if(cnt[i]>=2)
				{
					num.push_back(i);
					num.push_back(i);
				}
			}
		}
		if(num.size()<2)continue;
		if(ans.empty() or num[0]*num[1]/g < ans[0]*ans[1]/lastg)
		{
			ans=num;
			lastg=g;
		}
	}
	sort(id+1,id+N+1,cmp);
	ll p=0;
	for(i=1;i<=N and p<=1;i++)
	{
		if(a[id[i]]==ans[p])
		{
			out.push_back(id[i]);
			p++;
		}
	}
	sort(out.begin(),out.end());
	for(auto x:out)cout<<x<<' ';
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值