【实验】bayes nms的缺点

0.实验设计

首先通过ap指标来分析为什么bayes nms的效果差(在faster上面),之后结合nms动画来具体分析原因。

1. 整体

序号AP/AR说明NormalBayesBayes(原始score)
1Average Precision (AP)@[ IoU=0.50:0.95 area= all maxDets=100 ]0.3770.3710.375
2Average Precision (AP)@[ IoU=0.50 area= all maxDets=100 ]0.5920.5810.588
3Average Precision (AP)@[ IoU=0.75 area= all maxDets=100 ]0.4110.4040.407
4Average Precision (AP)@[ IoU=0.50:0.95 area= small maxDets=100 ]0.2190.2120.218
5Average Precision (AP)@[ IoU=0.50:0.95 area=medium maxDets=100 ]0.4140.4070.411
6Average Precision (AP)@[ IoU=0.50:0.95 area= large maxDets=100 ]0.4870.4830.485
7Average Recall (AR)@[ IoU=0.50:0.95 area= all maxDets= 1 ]0.3100.3110.311
8Average Recall (AR)@[ IoU=0.50:0.95 area= all maxDets= 10 ]0.4960.4980.498
9Average Recall (AR)@[ IoU=0.50:0.95 area= all maxDets=100 ]0.5190.5210.522
10Average Recall (AR)@[ IoU=0.50:0.95 area= small maxDets=100 ]0.3230.3220.324
11Average Recall (AR)@[ IoU=0.50:0.95 area=medium maxDets=100 ]0.5570.5600.559
12Average Recall (AR)@[ IoU=0.50:0.95 area= large maxDets=100 ]0.6590.6640.664

对比可以发现bayes的AR增加了,但是AP反而降低了。小物体的AR减少了一些。
Bayes NMS改变的是score。
score的改变对最终指标(mAP)的影响有两方面:

  • nms过程中的局部极大值改变(主要影响Recall)。这就有好有坏了。好:更准->score更高,更可能是局部极大值。
  • 计算AP时det的顺序(主要影响Precision)。好:更准->score更高。

AR的降低有两种可能,都出在NMS的过程中:

  1. score降低,被nms的maxDet=100排除掉。
  2. 优质det的score被降低,被劣质det给抑制掉。

2.NMS后的匹配质量

整体来说,并没有出现soft-nms中那样多出好几个框的情况。匹配框的质量有所提高。比如img_id=1296:
Normal在这里插入图片描述
Bayes:
在这里插入图片描述
框的质量提升了。

3. 具体分析

方法为观察每一张图片的AP,寻找那些Bayes比Normal差(AP小)的图片,并根据nms动画寻找原因。
用到的文件夹有:
nms动画
\nms_anime_nms_Faster_r50_Baye_nms
\nms_anime_nms_Faster_r50_Normal_nms
ap的差(Bayes - base):
\BAYE_SUB_BASE_COMPARE
每张图片的ap:
\BAYE_BASE_PR

img_id=1296

在这里插入图片描述
1296中一共有4个物体,上面的“NMS后的匹配质量”中的两张图片就是1296的匹配结果,Bayes(简称B)和Normal(简称N)的匹配结果是一致的,甚至Bayes的效果还要好一些,因为其匹配的dt质量更高。但是Bayes的AP低了很多。
具体的AP结果如下:
Normal:
在这里插入图片描述
Bayes:
在这里插入图片描述
为何?
观察动画:
Normal:
在这里插入图片描述
在这里插入图片描述
而对于同一个物体,BayesNMS如下:
在这里插入图片描述在这里插入图片描述
B的顺序和N的相反,这是因为那些小框更加密集,所以分数更高。顺序一反,第一个框就成了FP,自然AP就降低了。

img_id = 10363
在这里插入图片描述
主要原因是Recall的下降,并且是中、大物体的Recall下降。
Normal:
在这里插入图片描述
Bayes:
在这里插入图片描述
可以看出来框的质量下降了。这是因为score的改变
优质框:0.522 -> 0.538
劣质框:0.501 -> 0.580
两个框的分数都有所提升。但是由于劣质框周边有更近的Det,导致bayes后的score更高。进而在nms的过程中,劣质框将优质框抑制掉。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值