论文
文章平均质量分 93
FSALICEALEX
这个作者很懒,什么都没留下…
展开
-
【论文】人工智能前沿论文集
2020.2.16https://zhuanlan.zhihu.com/p/107060834,https://arxiv.org/pdf/2002.05709.pdfHinton组力作:ImageNet无监督学习最佳性能一次提升7%,媲美监督学习。https://www.zhihu.com/question/355779873,https://arxiv.org/pdf/1911...原创 2020-02-16 16:19:23 · 997 阅读 · 0 评论 -
【论文】【实例分割】YOLACT
YOLACT: Real-time Instance Segmentationhttps://arxiv.org/abs/1904.02689https://zhuanlan.zhihu.com/p/62652145We present a simple, fully-convolutional model for real-time instance segmentation tha...原创 2019-10-16 09:48:49 · 522 阅读 · 0 评论 -
【论文】YOLO(You Only Look Once: Unified, Real-Time Object Detection)简介
一、简介在YOLO之前所采用得方法,通常是两个阶段(two-stage)的检测方法,首先生成大量的bbox(bounding box),之后根据bbox在特征层上的映射来进行分类(classification)以及进一步的bbox位置修正(regression)。而YOLO将目标检测问题化为了一个回归问题,直接从图像映射得到bbox和类别概率。它相比two-stage的方法有两个有点:1.快。...原创 2019-10-15 14:23:41 · 349 阅读 · 0 评论 -
【论文】YOLOv1
YOLOv1的结构很简单,和一般的分类网络差别不大。主要是损失函数的设计以及对于训练过程的设计,还有就是网络输出代表的含义。YOLOv1的输出是一个7*7的矩阵,它假设网络相应index的输出对应于输入图片相应的grid,每个index对应几个b-box,这个b-box是有限定的,它的中心处于grid中,因此我们的目标之一应该是是判断grid中是否包含某个物体的中心,假如中心没有包含在gr...原创 2019-03-28 15:31:37 · 188 阅读 · 0 评论 -
【论文】R-FCN: Object Detection via Region-based Fully Convolutional Network总结
一、简介R-FCN是一个与faster r-cnn有类似结构的two-stage网络,首先通过一个网络共同提取特征,之后通过一个RPN来提出候选框,然后对候选框进行微调以及对物体进行识别。RPN与faster r-cnn一样,改变的是后面的网络,R-FCN使用了一种全卷积网络结构,降低了最后一层全连接层所带来的速度影响,而且提出了两个概念:translation-invariance以及tr...原创 2019-10-15 14:23:09 · 185 阅读 · 0 评论 -
【论文】SSD: Single Shot MultiBox Detector简介
一、简介SSD提出于2016年三月20日,比YOLO v1早两个月,但是它其中提到了YOLO,所以应该是比YOLO晚的。SSD也是一个one stage方法,它其中的改进包括:1.使用小卷积及取预测类别和定位偏差,2.使用不同的filter去对于不同宽高比(aspect ratio)进行判断,3.在多个feature map上进行判断。二、基本思想对于每个feature...原创 2019-03-28 22:42:21 · 260 阅读 · 0 评论 -
【论文】SPP(Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition)
本来是打算总结R-FCN的,但是我发现SPP和Over-Feat在很多地方都有提到,所以先对这两个东西进行一个总结。SPP网络的思想很简单,但是这篇论文却写出了很多东西,这一点很值得学习。一、简介SPP的提出是为了解决CNN固定输入的问题,这导致了在面对不同大小图片的时候,它只能使用裁剪或者缩放的方法获得与CNN输入大小一致的图片,但是这些方法会对物体产生形变,会丢失信息。SPP有几个很...原创 2019-03-29 21:16:32 · 700 阅读 · 0 评论 -
【论文】OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks总结
趁热打铁,把OverFeat总结了。一、简介这个文章中提出了一种较为通用的结构,并将其应用在了识别(classification)、定位(localization,只有一个物体,要给出位置)、检测(detection,可能有0到多个物体)。并且将其使用的特征提取器命名为了OverFeat(仅仅是一个名字,文中也没有给出解释)。这篇论文或许是很早一批将CNN利用到多种不同任务上的一种尝试,因...原创 2019-03-30 11:27:04 · 274 阅读 · 0 评论 -
【论文】YOLOv2
这里只简要介绍一下YOLOv2,谈谈想法。关于YOLOv2,下面的这篇介绍的已经很详尽了:https://www.jianshu.com/p/032b1eecb335首先罗列一些它做了什么:从上往下数:1.BN,在所有的卷积层后面添加BN层,移除dropout2.high resolution classifier,在高分辨图像上对分类网络finetune3.co...原创 2019-04-03 16:38:52 · 330 阅读 · 0 评论 -
【论文】Cascade R-CNN总结
一、简介Cascade R-CNN是为了解决训练时用来定义FP和TP的IOU值选取的问题,并且提出了一种结构来利用该IOU值不同所带来的好处,贡献体现在对于定位能力的改进上,也就是IOU值。一般而言,这个值定为了0.5,那么其他的值呢?作者做了实验,观察到以下现象:其中,图(d)中绘制的是随着定义TP的IOU阈值的变化,根据不同的u训练出来的检测器,AP的变化。可以看出来,在IO...原创 2019-04-08 11:13:51 · 1389 阅读 · 1 评论 -
【论文】目标检测中正负样本的选取总结
一、简介目标检测有大量的算法,这篇文章对其中正负样本的选取方法进行了总结。对于正样本,是回归与分类都进行,而负样本由于没有回归的对象,不进行回归,只进行分类(分类为背景)。二、正文1.Fast R-CNN构造如下:步骤是1.selective search -> ROIs -> 筛选 -> ROIs2.ROIs + feature map -&g...原创 2019-10-15 14:21:30 · 6753 阅读 · 0 评论 -
【论文】SNIP - An Analysis of Scale Invariance in Object Detection
1.问题COCO数据集中存在的两个问题:1.大量小物体 2.尺度变化极大Therefore,most object instances in COCO are smaller than 1% of imagearea! To make matters worse, the scale of the smallest and largest 10%of object instances i...原创 2019-07-17 21:50:06 · 340 阅读 · 0 评论 -
【论文】Paper List
FSAF: Feature Selective Anchor-Free Module for Single-Shot Object Detection两个部件:anchor free 模块,layer选择模块。FreeAnchor:原创 2019-10-15 13:56:50 · 328 阅读 · 0 评论