PHP矩阵运算(矩阵相加、矩阵相减、矩阵点乘、矩阵叉乘、矩阵转置)

<?php
    // 矩阵的定义形式为二维数组,如M1和M2为两个两行两列的矩阵
    $M1 = array(
        array(1,1),
        array(1,1)
    );

    $M2 = array(
        array(1,1),
        array(1,1)
    );

    /****************************************************************************/
    /*******************************封装矩阵相减函数******************************/
    function Matrix_subtraction($M1,$M2)
    {
        $M3 = array();
        if((count($M1)==count($M2))&&(count($M1[0])==count($M2[0])))
        {
           for($i=0;$i<count($M1);$i++)
           {
              for($j=0;$j<count($M1[0]);$j++)
              {
                $M3[$i][$j] = $M1[$i][$j] - $M2[$i][$j];
              }
           }
           return $M3;
        }
        else
        {
            exit('矩阵的行数或列数不相等,不满足运算规则!');
        }
    }

    /****************************************************************************/
    /*******************************封装矩阵相加函数******************************/
    function Matrix_addition($M1,$M2)
    {
        $M3 = array();
        if((count($M1)==count($M2))&&(count($M1[0])==count($M2[0])))
        {
           for($i=0;$i<count($M1);$i++)
           {
              for($j=0;$j<count($M1[0]);$j++)
              {
                $M3[$i][$j] = $M1[$i][$j] + $M2[$i][$j];
              }
           }
           return $M3;
        }
        else
        {
            exit('矩阵的行数或列数不相等,不满足运算规则!');
        }
    }

    /****************************************************************************/
    /*******************************封装矩阵叉乘函数******************************/
    function Matrix_cross_product($M1,$M2)
    {
        $M3 = array();
        if(count($M1[0])!=count($M2))
        {
            exit('前者的列数不等于后者的行数,不满足运算规则!');
        }
        // 左矩阵行数
        else
        {
          for($i=0;$i<count($M1);$i++)
          {   
            // 右矩阵列数
            for($k=0;$k<count($M2[0]);$k++)
            {
                // 左矩阵列数
                for($j=0;$j<count($M1[0]);$j++)
                {
                   @$M3[$i][$k] += $M1[$i][$j]*$M2[$j][$k];
                }
            }
          }
          return $M3;  
        }
    }
    
    /****************************************************************************/
    /*******************************封装矩阵点乘函数******************************/
    function Matrix_dot_multiplication($M1,$M2)
    {
        $M3 = array();
        if(count($M1)!=count($M2))
        {
            exit('矩阵的行数不一致!');
        }
        else if(count($M1[0])!=count($M2[0]))
        {
           if(count($M1[0])==1)
           {
             for($i=0;$i<count($M1);$i++)
             {
                for($j=0;$j<count($M2[0]);$j++)
                {
                    $M3[$i][$j] = $M1[$i][0]*$M2[$i][$j];
                }
             }
             return $M3;
           }
           else
           {
            exit('矩阵的列数不满足要求!');
           }
        }
        else
        {
           for($i=0;$i<count($M1);$i++)
           {
              for($j=0;$j<count($M1[0]);$j++)
              {
                $M3[$i][$j] = $M1[$i][$j]*$M2[$i][$j];
              }
           }
           return $M3;
        }
    }

    /****************************************************************************/
    /*******************************封装矩阵转置函数******************************/
    function Matrix_transpose($M)
    {
        $M_transpose = array();
        for($i=0;$i<count($M);$i++)
        {
            for($j=0;$j<count($M[0]);$j++)
            {
                $M_transpose[$j][$i] = $M[$i][$j];
            }
        }
        return $M_transpose;
    }
?>

  • 8
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 以下是 C++ 中实现矩阵加减乘除、逆运算和转置运算的基本代码: ``` #include <iostream> #include <vector> using namespace std; // 定义矩阵数据类型 typedef vector<vector<double>> Matrix; // 矩阵加法 Matrix matrixAddition(Matrix A, Matrix B) { int m = A.size(), n = A[0].size(); Matrix C(m, vector<double>(n)); for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { C[i][j] = A[i][j] + B[i][j]; } } return C; } // 矩阵减法 Matrix matrixSubtraction(Matrix A, Matrix B) { int m = A.size(), n = A[0].size(); Matrix C(m, vector<double>(n)); for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { C[i][j] = A[i][j] - B[i][j]; } } return C; } // 矩阵乘法 Matrix matrixMultiplication(Matrix A, Matrix B) { int m = A.size(), n = A[0].size(), l = B[0].size(); Matrix C(m, vector<double>(l)); for (int i = 0; i < m; i++) { for (int j = 0; j < l; j++) { for (int k = 0; k < n; k++) { C[i][j] += A[i][k] * B[k][j]; } } } return C; } // 矩阵除法 Matrix matrixDivision(Matrix A, Matrix B) { int m = A.size(), n = A[0].size(); Matrix C(m, vector<double>(n)); for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { C[i][j] = A[i][j] / B[i][j]; } } return C; } // 矩阵逆运算 Matrix matrixInverse(Matrix A) { int n = A.size(); Matrix B(n, vector<double>(n, 0)); for (int i = 0; i < n; i++) { B[i][i] = 1; } for (int i = 0; i < n; i++) { double pivot = A[i][i]; if (pivot == 0) { cout << "Matrix is not invertible" << endl; return A; } for (int j = 0; j < n; j++) { A[i][j] /= pivot; B[i][j] /= pivot; } for (int j = 0; j < n; j++) { if (i != j) { double factor = A[j][i]; for (int k = 0; k < n; k++) { A[j][k] -= factor * A[i][k]; B[j][k] -= factor * B[i][k]; } } } } return B; } // 矩阵转置 Matrix matrixTranspose(Matrix A) { int m = A.size(), n = A[0].size(); Matrix B(n, vector<double>(m)); for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { B[i][j] = A[j][i]; } } return B; } int main() { // 定义两个矩阵 Matrix A = {{1, 2}, {3, 4}}; Matrix B = {{5, 6}, {7, 8}}; // 矩阵加减法 Matrix C = matrixAddition(A, B); Matrix D = matrixSubtraction(A, B); cout << "Matrix addition result:" << endl; for (auto row : C) { for (auto elem : row) { cout << elem << " "; } cout << endl; } cout << "Matrix subtraction result:" << endl; for (auto row : D) { for (auto elem : row) { cout << elem << " "; } cout << endl; } // 矩阵乘法 Matrix E = matrixMultiplication(A, B); cout << "Matrix multiplication result:" << endl; for (auto row : E) { for (auto elem : row) { cout << elem << " "; } cout << endl; } // 矩阵除法 Matrix F = matrixDivision(A, B); cout << "Matrix division result:" << endl; for (auto row : F) { for (auto elem : row) { cout << elem << " "; } cout << endl; } // 矩阵逆运算 Matrix G = matrixInverse(A); cout << "Matrix inverse result:" << endl; for (auto row : G) { for (auto elem : row) { cout << elem << " "; } cout << endl; } // 矩阵转置 Matrix H = matrixTranspose(A); cout << "Matrix transpose result:" << endl; for (auto row : H) { for (auto elem : row) { cout << elem << " "; } cout << endl; } return 0; } ``` 以上代码实现了矩阵加减乘除、逆运算和转置运算,并在主函数中进行了示例操作。可以根据自己的需求进行修改和扩展。需要注意的是,在进行矩阵逆运算时,要先判断矩阵是否可逆,如果不可逆则直接返回原矩阵。 ### 回答2: 矩阵运算是指对矩阵进行加减乘除等基本运算的过程。 加法:两个矩阵进行加法运算时,要求这两个矩阵的行数和列数都相同,相同位置的元素相加得到结果矩阵。 减法:两个矩阵进行减法运算时,同样要求行数和列数相同,相同位置的元素相减得到结果矩阵。 乘法:矩阵乘法是指两个矩阵进行乘法运算,其中一个矩阵的列数要等于另一个矩阵的行数,得到的结果矩阵的行数等于第一个矩阵的行数,列数等于第二个矩阵的列数。 除法:矩阵除法是指通过矩阵的逆来实现除法运算。要求被除矩阵为方阵,且其逆矩阵存在。将除矩阵与逆矩阵相乘,得到结果矩阵。 逆运算:矩阵的逆是指满足逆矩阵性质的矩阵。对于一个方阵A,如果存在一个矩阵B,使得A与B的乘积为单位矩阵,即AB=BA=I,那么矩阵B就是矩阵A的逆矩阵。 转置运算:矩阵的转置是指将矩阵的行与列互换得到的新矩阵。即A的转置矩阵为A的列变成行,行变成列。如果矩阵A的大小为m x n,则其转置矩阵为n x m。 ### 回答3: 矩阵是数学中的一种重要的数学工具,矩阵运算是指对矩阵进行加减乘除、逆运算和转置运算。 矩阵加法是指将两个相同大小的矩阵对应位置上的元素进行相加,得到一个新的矩阵。例如,对于两个3×3矩阵A和B,它们的和矩阵C可以通过将A和B对应位置上的元素相加得到。 矩阵减法是指将两个相同大小的矩阵对应位置上的元素进行相减,得到一个新的矩阵。和矩阵加法类似,对于两个3×3矩阵A和B,它们的差矩阵C可以通过将A和B对应位置上的元素相减得到。 矩阵乘法是指将一个矩阵的行与另一个矩阵的列进行乘法运算,得到一个新的矩阵。例如,对于一个3×2的矩阵A和一个2×4的矩阵B,它们的乘积矩阵C可以通过将A的每一行与B的每一列进行乘法运算,然后将结果相加得到。 矩阵的逆运算是指对一个可逆的方阵进行操作,得到一个新的方阵。如果一个矩阵A有逆矩阵B,那么矩阵A乘以矩阵B的结果是单位矩阵。逆矩阵可以通过高斯-约当消元法等方法求解。 矩阵的转置是指将矩阵的行和列对换,得到一个新的矩阵。例如,对于一个3×2的矩阵A,它的转置矩阵B可以通过将A的行换成列,A的列换成行得到。 总结来说,矩阵运算包括矩阵加法、减法、乘法、逆运算和转置运算。它们在数学和工程领域中有着广泛的应用。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值