计算几何 || 半平面交 (模板收集)

#include<cstdio>
#include<algorithm>
#include<queue>
#include<cmath>
using namespace std;
const double eps = 1e-8;
struct Point{
    double x,y;
    Point(double xx=0.0,double yy=0.0):x(xx),y(yy){}
    Point operator - (const Point &b)const{
        return Point(x-b.x,y-b.y);
    }
    Point operator +(const Point &b)const{
        return Point(x+b.x,y+b.y);
    }
    Point operator /(const double &b)const{
        return Point(x/b,y/b);
    }
    Point operator *(const double &b)const{
        return Point(x*b,y*b);
    }
    double operator ^(const Point &b)const{
        return x*b.y-y*b.x;
    }
};
typedef Point myvec;
double cross(myvec a,myvec b){
    return a^b;
}
struct Line{
    Point p;
    myvec v;
    double ang;
    Line(){}
    Line( Point pp,myvec vv):p(pp),v(vv){}
    bool operator < (const Line &l)const{
        return ang < l.ang;
    }

};
//点p在有向直线L的左边(线上不算)
bool on_left( Line l,Point p){
    return cross(l.v,p-l.p)>0;
}
//直线交点 假设交点唯一存在
Point get_inter_section(Line a,Line b){
    myvec u = a.p - b. p;
    double t = cross(b.v,u)/cross(a.v,b.v);
    return a.p+a.v*t;

}
int half_plane_inter_section(Line *L,int n,Point *poly){
    sort(L,L+n);//级角排序
    int fir,lst;//双向队列的第一个元素和最后一个元素的下标
    Point *p = new Point[n];//p[i] 为q[i]和q[i+1]的交点
    Line *q = new Line[n];//双端队列
    q[ fir = lst = 0 ] = L[0];//双端队列初始化为只有一个半平面的L[0]
    for( int i =1; i <n ; ++i)
    {
        while( fir < lst && !on_left(L[i],p[lst-1]) )
            lst--;
        while( fir<lst && !on_left(L[i],p[fir]) )
            fir++;
        q[++lst] = L[i];
        if( fabs( cross(q[lst].v,q[lst-1].v) ) < eps ){//两向量平行且同向 取内侧一个
            lst--;
            if( on_left(q[lst],L[i].p) )
                q[lst] = L[i];
        }
        if( fir < lst )
            p[lst-1] = get_inter_section(q[lst-1],q[lst]);
    }
    while( fir< lst && !on_left(q[fir],p[lst-1]))
        lst--;//删除无用的平面
    if(lst - fir <=1 )
        return 0;//空集
    p[lst] = get_inter_section(q[lst],q[fir]);//计算首尾两个半平面的交点

    //从 deque 复制到输出中
    int m = 0 ;
     for( int i = fir;i<=lst;++i)
        poly[m++] = p[i];
     return m;
}
int main()
{
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值