Description
想知道f:A->B这个函数(其中|A|=n, |B|=m)的所有映射关系要使B的每个元素都要被A的一个元素覆盖到。
数字可能很大你只要输出方案数模1,000,000,007即可。
题解
枚举有在B中有几个元素一定被映射到了,假设B中有
i
个元素一定被映射到了,那么方案就是
代码
#include<cstdio>
#include<cstring>
#include<algorithm>
#define maxn 1000006
#define tt 1000000007
#define LL long long
using namespace std;
int n,m;
LL ans,f[maxn],inv[maxn];
LL power(LL x,int y){
if(!y)return 1;
if(y==1)return x%tt;
LL c=power(x,y>>1);
if(y&1)return c*x%tt*c%tt;
else return c*c%tt;
}
LL C(int x,int y){return f[x]*inv[y]%tt*inv[x-y]%tt;}
int main(){
freopen("function.in","r",stdin);
freopen("function.out","w",stdout);
scanf("%d%d",&n,&m);
if(n<m)return printf("0\n"),0;
f[0]=inv[0]=1;
for(int i=1;i<=m;i++)(f[i]=f[i-1]*i)%=tt;
inv[m]=power(f[m],tt-2);
for(int i=m-1;i>=1;i--)inv[i]=inv[i+1]*(i+1)%tt;
for(int i=0;i<m;i++)(ans+=C(m,i)*power(m-i,n)%tt*((i&1)?-1:1))%=tt;
printf("%lld\n",(ans+tt)%tt);
return 0;
}