Description
小镇的公交车站里有N辆公交,标号为0,1,2,…,N-1。这个小镇的公交运作模式比较奇葩,当必须有一辆车离开车站时,系统会随机从N辆车中选择一辆车,其中任意一辆车i被选中的概率为prob[i]/100,当车i被选中后它会离开车站,并且在之后的time[i]的时间内完成它的行程并返回车站。然后系统又开始随机选N辆车之一(存在同一辆车被连续多次选中的可能)。这个车站在0时刻发出第一班车。如果你在s时刻到达车站,且一定搭乘下一班车,那么你等待的时间的期望是多少?
题解
定义 f[i] 表示第 i <script type="math/tex" id="MathJax-Element-2">i</script>个时刻有一辆公交车入站的概率,那么答案只要枚举一下最后一辆车进站的时间,再枚举是那一辆车就可以了。转移只要枚举当前驶入的是那一辆车。
代码
#include<cstdio>
#include<cstring>
#include<algorithm>
#define maxn 106
#define maxs 100006
using namespace std;
inline char nc(){
static char buf[100000],*i=buf,*j=buf;
return i==j&&(j=(i=buf)+fread(buf,1,100000,stdin),i==j)?EOF:*i++;
}
inline int _read(){
char ch=nc();int sum=0;
while(!(ch>='0'&&ch<='9'))ch=nc();
while(ch>='0'&&ch<='9')sum=sum*10+ch-48,ch=nc();
return sum;
}
int n,T,s,p[maxn],t[maxn];
double ans,f[maxs];
int main(){
freopen("bus.in","r",stdin);
freopen("bus.out","w",stdout);
T=_read();
while(T--){
n=_read();s=_read();
for(int i=1;i<=n;i++)t[i]=_read(),p[i]=_read();
memset(f,0,sizeof(f));
f[0]=1;
for(int i=1;i<=s;i++)
for(int j=1;j<=n;j++) if(i>=t[j])f[i]+=f[i-t[j]]*p[j]/100;
ans=0;
for(int i=0;i<s;i++)
for(int j=1;j<=n;j++) if(i+t[j]>=s)ans+=f[i]*p[j]/100*(i+t[j]-s);
printf("%.4lf\n",ans);
}
return 0;
}