概率论
题目:
osu 是一款群众喜闻乐见的休闲软件。
我们可以把osu的规则简化与改编成以下的样子:
一共有n次操作,每次操作只有成功与失败之分,成功对应1,失败对应0,n次操作对应为1个长度为n的01串。在这个串中连续的 X个1可以贡献X^3 的分数,这x个1不能被其他连续的1所包含(也就是极长的一串1,具体见样例解释)
现在给出n,以及每个操作的成功率,请你输出期望分数,输出四舍五入后保留1位小数。
Input
第一行有一个正整数n,表示操作个数。接下去n行每行有一个[0,1]之间的实数,表示每个操作的成功率。
Output
只有一个实数,表示答案。答案四舍五入后保留1位小数。
Sample Input
3
0.5
0.5
0.5
Sample Output
6.0
Hint
【样例说明】
000分数为0,001分数为1,010分数为1,100分数为1,101分数为2,110分数为8,011分数为8,111分数为27,总和为48,期望为48/8=6.0
N<=100000
思路 如果已有x个1,再增加一个1时, 对答案的贡献为
设F[i]为到当前位置,x的期望 G[i]为到当前位置,x^2的期望
#include<cstdio>
#include<algorithm>
#include<string>
#include<cstring>
#include<sstream>
#include<iostream>
#include<cmath>
#include<queue>
#include<map>
#include<set>
#include<iomanip>
#define ll long long
using namespace std;
double f[100010],g[100010],a[100010];
int main()
{
int n,d,t;
double s1;
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%lf",&s1);
f[i]=(f[i-1]+1)*s1;
g[i]=(g[i-1]+2*f[i-1]+1)*s1;
a[i]=a[i-1]+(3*g[i-1]+3*f[i-1]+1)*s1;
}
printf("%.1lf\n",a[n]);
return 0;
}