题目大意:
给一张无向图,转化为一张有向图(每条边选择一个方向),从每个点i遍历可以到达ri个点(包括自己),给出一种建图方式时得ri最小值最大。
首先如果一些点可以构成环,那么他们的连成环一定更优。
所以先求出边双,再二分答案。
其实无需二分,因为最大值一定是最大环(最大值不可能大于入度为0 的环的大小)。
当时写了二分但还是过了。
给一张无向图,转化为一张有向图(每条边选择一个方向),从每个点i遍历可以到达ri个点(包括自己),给出一种建图方式时得ri最小值最大。
首先如果一些点可以构成环,那么他们的连成环一定更优。
所以先求出边双,再二分答案。
其实无需二分,因为最大值一定是最大环(最大值不可能大于入度为0 的环的大小)。
当时写了二分但还是过了。
#include<cstdio>
#include<cstring>
#include<algorithm>
#define rep(i,a,b) for(i=a;i<=b;i++)
using namespace std;
const int N=400010;
int x[N],y[N];
struct node{
int to,next,pos;
};node edge[N*2];
int graph[N],size;
int dfn[N],low[N],sig,cnt,col[N];
int stack[N],top;
int vis[N],flag[N];
int f[N],dp[N];
int n,m;
int read(){
int x=0;char ch=getchar();
while(ch<'0'||ch>'9') ch=getchar();
while(ch>='0'&&ch<='9'){
x=x*10+ch-'0';
ch=getchar();
}
return x;
}
void addedge(int i,int u,int v,int pos){
edge[i].to=v;edge[i].pos=pos;edge[i].next=graph[u];graph[u]=i;
}
void tarjan(int u,int pre){
int i,v;int tmp;
dfn[u]=low[u]=++sig;
stack[++top]=u;
for(i=graph[u];i;i=edge[i].next){
v=edge[i].to;
if(v==pre) continue;
if(!dfn[v]){
tarjan(v,u);low[u]=min(low[u],low[v]);
}
else{
low[u]=min(low[u],dfn[v]);
}
}
if(low[u]==dfn[u]){
cnt++;
do{
tmp=stack[top--];
col[tmp]=cnt;
f[cnt]++;
}while(tmp!=u);
}
}
void dfs(int u,int pre){
int i,v,pos;
flag[u]=1;
for(i=graph[u];i;i=edge[i].next){
v=edge[i].to;pos=edge[i].pos;
if(vis[pos]) continue;
if(v==pre) continue;
x[pos]=u;y[pos]=v;
vis[pos]=1;
if(flag[v]) continue;
dfs(v,u);
}
}
inline void doit(int pos,int u,int v){
if(col[x[pos]]!=u){
x[pos]^=y[pos];y[pos]^=x[pos];x[pos]^=y[pos];
}
}
void work(int u,int pre,int k){
int i,v,pos,minx;
dp[u]=f[u];
for(i=graph[u];i;i=edge[i].next){
v=edge[i].to;pos=edge[i].pos;
if(v==pre) continue;
work(v,u,k);
if(dp[v]>=k){
dp[u]+=dp[v];
}
}
}
void work1(int u,int pre,int k){
int i,v,pos,minx;
dp[u]=f[u];
for(i=graph[u];i;i=edge[i].next){
v=edge[i].to;pos=edge[i].pos;
if(v==pre) continue;
work1(v,u,k);
if(dp[v]>=k){
dp[u]+=dp[v];
doit(pos,u,v);
}
if(dp[v]<k){
doit(pos,v,u);
}
}
}
bool check(int mid){
work(1,0,mid);
if(dp[1]>=mid) return true;
else return false;
}
int main(){
scanf("%d%d",&n,&m);
int i;
rep(i,1,m){
x[i]=read();y[i]=read();
size++;addedge(size,x[i],y[i],i);
size++;addedge(size,y[i],x[i],i);
}
int r1,r2;
tarjan(1,0);
size=0;memset(graph,0,sizeof(graph));
rep(i,1,m){
r1=col[x[i]];r2=col[y[i]];
if(r1==r2){
size++;addedge(size,x[i],y[i],i);
size++;addedge(size,y[i],x[i],i);
}
}
rep(i,1,n){
if(!flag[i]){
dfs(i,0);
}
}
size=0;memset(graph,0,sizeof(graph));
rep(i,1,m){
r1=col[x[i]];r2=col[y[i]];
if(r1!=r2){
size++;addedge(size,r1,r2,i);
size++;addedge(size,r2,r1,i);
}
}
int l=0,r=n+1,mid,ans;
while(l<r){
mid=l+r>>1;
if(check(mid)){
ans=mid;l=mid+1;
}
else r=mid;
}
printf("%d\n",ans);
work1(1,0,ans);
rep(i,1,m){
printf("%d %d\n",x[i],y[i]);
}
}