codeforces 732F

题目大意:
给一张无向图,转化为一张有向图(每条边选择一个方向),从每个点i遍历可以到达ri个点(包括自己),给出一种建图方式时得ri最小值最大。
首先如果一些点可以构成环,那么他们的连成环一定更优。
所以先求出边双,再二分答案。
其实无需二分,因为最大值一定是最大环(最大值不可能大于入度为0 的环的大小)。
当时写了二分但还是过了。
#include<cstdio>
#include<cstring>
#include<algorithm>
#define rep(i,a,b) for(i=a;i<=b;i++)
using namespace std;
const int N=400010;
int x[N],y[N];
struct node{
	int to,next,pos;
};node edge[N*2];
int graph[N],size;
int dfn[N],low[N],sig,cnt,col[N];
int stack[N],top;
int vis[N],flag[N];
int f[N],dp[N];
int n,m;

int read(){
	int x=0;char ch=getchar();
	while(ch<'0'||ch>'9')	ch=getchar();
	while(ch>='0'&&ch<='9'){
		x=x*10+ch-'0';
		ch=getchar();
	}
	return x;
}


void addedge(int i,int u,int v,int pos){
	edge[i].to=v;edge[i].pos=pos;edge[i].next=graph[u];graph[u]=i;
}

void tarjan(int u,int pre){
	int i,v;int tmp;
	dfn[u]=low[u]=++sig;
	stack[++top]=u;
	for(i=graph[u];i;i=edge[i].next){
		v=edge[i].to;
		if(v==pre)	continue;
		if(!dfn[v]){
			tarjan(v,u);low[u]=min(low[u],low[v]);				
		}
		else{
			low[u]=min(low[u],dfn[v]);		
		}		
	}
	if(low[u]==dfn[u]){
		cnt++;
		do{
			tmp=stack[top--];
			col[tmp]=cnt;
			f[cnt]++;
		}while(tmp!=u);
	}
}

void dfs(int u,int pre){
	int i,v,pos;
	flag[u]=1;
	for(i=graph[u];i;i=edge[i].next){
		v=edge[i].to;pos=edge[i].pos;
		if(vis[pos])	continue;
		if(v==pre)	continue;
		x[pos]=u;y[pos]=v;
		vis[pos]=1;
		if(flag[v])	continue;
		dfs(v,u);
	}
}

inline void doit(int pos,int u,int v){
	if(col[x[pos]]!=u){
		x[pos]^=y[pos];y[pos]^=x[pos];x[pos]^=y[pos];
	}
}

void work(int u,int pre,int k){
	int i,v,pos,minx;
	dp[u]=f[u];
	for(i=graph[u];i;i=edge[i].next){
		v=edge[i].to;pos=edge[i].pos;
		if(v==pre)	continue;
		work(v,u,k);
		if(dp[v]>=k){
			dp[u]+=dp[v];
		}
	}
}

void work1(int u,int pre,int k){
	int i,v,pos,minx;
	dp[u]=f[u];
	for(i=graph[u];i;i=edge[i].next){
		v=edge[i].to;pos=edge[i].pos;
		if(v==pre)	continue;
		work1(v,u,k);
		if(dp[v]>=k){
			dp[u]+=dp[v];
			doit(pos,u,v);
		}
		if(dp[v]<k){
			doit(pos,v,u);
		}
	}
}

bool check(int mid){
	work(1,0,mid);
	if(dp[1]>=mid)	return true;
	else return false;
}

int main(){
	scanf("%d%d",&n,&m);
	int i;
	rep(i,1,m){
		x[i]=read();y[i]=read();
		size++;addedge(size,x[i],y[i],i);
		size++;addedge(size,y[i],x[i],i);
	}
	int r1,r2;
	tarjan(1,0);
	size=0;memset(graph,0,sizeof(graph));	
	rep(i,1,m){
		r1=col[x[i]];r2=col[y[i]];
		if(r1==r2){
			size++;addedge(size,x[i],y[i],i);
			size++;addedge(size,y[i],x[i],i);
		}		
	}
	rep(i,1,n){
		if(!flag[i]){
			dfs(i,0);
		}
	}
	size=0;memset(graph,0,sizeof(graph));
	rep(i,1,m){
		r1=col[x[i]];r2=col[y[i]];
		if(r1!=r2){
			size++;addedge(size,r1,r2,i);
			size++;addedge(size,r2,r1,i);
		}
	}
	int l=0,r=n+1,mid,ans; 
	while(l<r){
		mid=l+r>>1;
		if(check(mid)){
			ans=mid;l=mid+1;
		}
		else r=mid;
	}
	printf("%d\n",ans);
	work1(1,0,ans);
	rep(i,1,m){
		printf("%d %d\n",x[i],y[i]);
	}
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值