PCA和Fisher线性判别总结

主成份分析(Principal Component Analysis, PCA)是数据降维领域中最经典的降维方法之一。 PCA的降维的核心就在于将原始n维数据投影到k个单位标准正交基上,为了保证投影后的数据包含足够的信息,PCA要求投影后每一维特征的方差足够大,因为方差越大,投影到低维后重叠越少。同时,PCA也要求特征之间互相独立,这样可以保证不同特征间含有更少的重复信息。
参考:PCA的详细介绍

Fisher线性判别(Fisher’s Linear Discriminant )是两类线性分类中的一种基础模型。Fisher线性判别的核心是将原始数据投影到一维空间中,使得原本线性不可分的数据变得线性可分。Fisher线性判别的关键在于最大化一个准则函数J,准则函数J是由类间散度比上类内散度得到的。最大化准则函数J是要求类内散度足够小而类间散度足够大。小的类内散度保证了当前类中的数据足够紧密。大的类间散度保证了这两个类有足够的可分性。类间散度定义为投影后两类样本均值差的平方。类内散度定义为两类样本投影后与各自均值差的和的平方和。
参考:Fisher线性判别详细介绍

之所以将这两个算法放到一起来讲,是因为这两个算法虽然解决的是不同的问题,但是都是通过将原始数据投影到低维空间的方式来解决的。

  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值