解密 ArcGraph 分布式一致性:Raft 协议与分布式事务实现丨技术专栏

导读:本文提出了一种将事务日志和 Raft 日志融合在一起的机制,从而实现了分布式事务和数据一致性的场景。

01 背景介绍

分布式系统是伴随着互联网的高速发展而出现的。其出现为了应对单机系统无法解决的高并发、高可用性、容错性等问题。分布式系统将传统的系统扩容模式,从 scale up 转变为了 scale out。为了实现这一目标并兼顾性价比,分布式系统采用了廉价硬件系统,在软件层面实现了多数据副本(一般至少 3 个副本以防止硬件损坏)、自动容错、自动调度等能力。 在这其中,一个最关键的问题就是如何保证分布式系统中多个数据副本之间的一致性

而事务则是数据库领域的一个关键问题,它解决的是多个数据库操作之间应该如何并发执行的问题。往往是功能、性能、业务需求等多个因素的权衡与取舍,其复杂度并不逊色于分布式副本一致性的问题。特别是当分布式系统遇上了事务,这就演变成了一个分布式事务,其复杂度呈指数级上升,这也是很多分布式系统会放弃事务能力的原因。

过去二十年,工业界和学术界对这两个问题进行了大量研究,但具体到应用实践上,仍然有大量的细节需要处理。ArcGraph 作为底层基础设施,如果不提供这两项能力,则会给上层业务系统带来极大的复杂度,所以我们没有其他选择。在 ArcGraph 中我们结合 Raft 协议与数据库事务,最终实现了 ArcGraph 完整的分布式事务能力与数据强一致性,可以极大降低上层业务的复杂性

02 ArcGraph 的一致性策略选择

常见的分布式一致性策略

首先来看一下分布式系统中副本一致性的两大理论基础,即 CAP 理论和 BASE 理论:

  • **CAP 理论是指在一个分布系统中,一致性(Consistency)、可用性(Availability)、分区容错性(Partition Tolerance)三者不可兼得,最多只能同时满足其中的 2 个。**一致性指的是数据在多个副本之间能够保持一致的特性。可用性指的是系统提供的服务一直处于可用状态,每次请求都能获得正确的响应。分区容错性是指分布式系统在遇到任何网络分区故障时,仍然能够对外提供满足一致性和可用性的服务。

  • BASE 理论是基本可用(Basically Available)、软状态(Soft-state)和最终一致性(Eventually Consistent)的缩写, 它是对 CAP 中一致性 C 和可用性 A 权衡的结果,源于对大规模互联网系统分布式实践的总结,大大降低了对系统的要求。其核心思想是即使无法做到强一致性,但每个应用都可以根据自身的业务特点,采用适当的方式来使用系统达到最终一致性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Fabarta技术团队

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值