LinkedIn最新研究:图+向量数据库,客服解答时间缩短64%

摘要:LinkedIn 的研究团队提出了一种创新的客服自动问答架构,将检索增强生成与知识图谱完美结合,取得了惊人的效果。本文将带您深入解读这项研究的核心思路、关键技术与创新亮点,探讨知识图谱和向量数据库在智能客服领域的应用前景,展望人工智能重塑客户服务的美好未来。

作者丨Dr.Min WU Fabarta 科学顾问

01 导读

在这个数字化时代,高效、智能的客户服务已经成为企业制胜的关键。然而,面对日益增长的客户咨询量,传统的人工客服模式已然捉襟见肘。如何利用人工智能技术,打造一个能够快速、准确解答客户问题的自动问答系统,成为了业界亟待攻克的难题。

近日,一项突破性的研究为这一难题提供了崭新的解决方案。LinkedIn 的研究团队提出了一种创新的客服自动问答架构,将检索增强生成(Retrieval Augmented Generation,RAG)与知识图谱(Knowledge Graph)完美结合,取得了惊人的效果[1]。通过构建结构化的领域知识库,并引入向量数据库加速语义检索,该方案不仅使问题解决时间大幅缩短,还极大地提升了答案的相关性和准确性。

这一里程碑式的成果已发表在《Combining Retrieval Augmented Generation with Knowledge Graphs for Customer Service Question Answering》论文中,引起了工业界的广泛关注和好评。本文将带您深入解读这项研究的核心思路、关键技术与创新亮点,探讨知识图谱和向量数据库在智能客服领域的应用前景,展望人工智能重塑客户服务的美好未来。

02 研究背景与问题提出

客服自动问答一直是智能客服领域的研究热点。如何从海量的历史服务工单中快速、准确地检索出与用户问题相关的信息,并据此生成恰当的回答,是决定系统性能的关键。传统的检索增强生成方法虽然在一定程度上提高了答案的相关性,但仍然存在两个主要问题:

  1. 结构化信息忽略:将历史工单视为纯文本处理,忽略了其内在的结构化信息和问题之间的关联性,导致检索准确率不高。
  2. 信息断裂:为适应预训练语言模型的输入长度限制,往往需要对工单进行分段,这可能造成关键信息的丢失和语义的割裂,影响生成答案的完整性和连贯性。

针对以上这些问题,该论文提出了一种全新的解决方案。

03 融合知识图谱与 RAG 的技术方案

3.1 让我们先举个例子

下面这个示例描述了如何在客户服务问答系统中应用结合知识图谱和检索增强生成(RAG)的方法。这个例子将通过实际的票据数据和构建过程,展示技术实现的详细步骤。我们有以下几个示例客服票据:

  • Ticket 1: ENT-101
    • Log in to the account.
    • Proceed to checkout.
    • Enter credit card details and submit.
    • Title: "User cannot complete payment using credit card"
    • Description: "The user attempts to pay with a credit card but receives an error message saying 'Transaction failed'."
    • Steps to Reproduce:
    • Solution: "Check if the credit card information is correct and ensure that the card is not expired. If the problem persists, try using a different payment method."
  • Ticket 2: ENT-102
    • Click on 'Forgot Password'.
    • Enter the email address and submit.
    • Check the email inbox for the reset link.
    • Title: "User forgot password and cannot reset"
    • Description: "The user has forgotten their password and is unable to reset it because the reset email is not being received."
    • Steps to Reproduce:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Fabarta技术团队

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值