- 博客(6)
- 收藏
- 关注
原创 yolov8搭配GPU环境,并且解决GPU环境下设备运行报错问题
GPU,即图形处理单元,是专为图形渲染而设计的处理器。其独特的并行计算能力使得它在处理大规模数据和复杂图形时表现出色。GPU不仅在游戏和虚拟现实领域发挥着关键作用,还广泛应用于深度学习、物理模拟和通用计算等领域。通过数以千计的核心,GPU能够同时处理多个任务,大幅提升计算效率。随着技术的不断进步,GPU的性能持续增强,成为推动科技发展的重要力量之一。无论是在科学研究还是工业应用中,GPU都展现出了其强大的计算能力和广泛的应用前景。
2024-06-20 11:55:20 1294
原创 圆周率(PI)的多种计算方式,并且用代码实现圆周率的计算过程,完全开源
圆周率(Pi)是一个在数学及物理学中普遍存在的常数,一般定义为圆的周长与其直径之比,记作π。它是一个无理数,即无法表示为两个整数的比,且其小数部分无限不循环。圆周率π的前几位小数通常写作3.141。
2024-06-19 16:05:55 1558
原创 牛顿迭代法求解一元高阶方程
由于多数方程不存在求根公式,求精确根非常困难,甚至不可解,因此寻找方程的近似根就显得特别重要。牛顿迭代法就是为解决这一问题而提出的。
2024-06-19 09:40:00 2691 2
原创 如何使用C#进行串口通讯,并且进行代演示
基本概念串口通信是指通过串行接口(Serial Interface)在两个设备之间发送和接收数据的过程。串行接口可以将来自CPU的并行数据字符转换为连续的串行数据流发送出去,同时可将接收的串行数据流转换为并行的数据字符供给CPU。串口通信按位(bit)发送和接收字节,这种方式虽然比按字节(byte)的并行通信慢,但能实现远距离通信,且使用简单。数据格式串口通信的数据传输通常以字符为单位,每个字符一位一位地传输。
2024-06-18 07:03:05 729
原创 如何证明数学中是根号2无理数,并且通过编程求解根号2的值
实数可以简单的分为有理数和无理数,有理数都可以采用分数(其中 a 和 b 都是互质的整数)表示;而无理数不可以使用分数表示,并且无理数是无限不循环小数。
2024-06-17 21:48:50 2391
原创 yolov8从零开始到训练自己的数据集,保姆式教学文档,适合初学者
PyCharm 是一款由 JetBrains 开发的强大的 Python 集成开发环境(IDE)。它提供了许多工具和特性,帮助 Python 开发者更高效地编写、调试和测试代码。YOLOv8(You Only Look Once version 8)是Ultralytics公司在YOLO系列模型基础上推出的最新迭代版本,旨在提供更高的准确性和实时检测速度。YOLOv8支持多类别目标检测,能够识别出场景中的多种不同对象类别。
2024-06-15 12:59:09 4578 2
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人