ICDE2019论文简析:空间众包中的协同感知任务分配-Cooperation-Aware Task Assignment in Spatial Crowdsourcing

文章探讨了在空间众包中如何通过合作意识优化任务分配,提出CA-SC问题并证明其为NP-hard。作者提出任务优先级贪婪方法(TPG)和博弈论方法(GT),并应用两种优化策略以提高任务合作质量。实验结果显示,GT及其优化版本在合作质量得分上优于其他基线算法,同时在运行时间上有所权衡。
摘要由CSDN通过智能技术生成

ICDE2019论文简析:空间众包中的协同感知任务分配-Cooperation-Aware Task Assignment in Spatial Crowdsourcing

1.问题:

  • 作者提出了一个 “具有合作意识的空间众包”概念(CA-SC);
    因为大部分空间任务会受到时间限制(ps:在一栋建筑物中收集WI-FI信号的强度),并且需要许多workers合作去完成(ps:去附近多个地方发放传单),当workers被分配到这类任务时他们需要相互合作沟通,所以workers间的合作质量的好坏对于空间众包任务完成的结果十分重要
  • 证明CA-SC问题为NP-hard问题;

2.现状:

  • 作者提出的CA-SC问题是基于批处理的SAT模式,现有SAT下的研究没有关注于最大化总体合作得分,例如关注最大化服务器的已分配任务数、最大化分配的可靠度和多样性得分、最大化worker的接受率或者最大化worker能在截止日期前到达目的地实现的任务的总分配数。
  • 同时,workers的质量评价/收益也会受到合作质量的影响,良好的任务合作质量可以使workers、requesters and platform都受益,然而现有关于空间众包的研究中没有考虑workers的合作关系

3.贡献:
CA-SC的目的是将具有合作意识的移动workers更好的分配给空间任务,使得任务整体合作质量得分最大化。作者通过基于批处理的任务分配过程来处理CA-SC问题,提出了**任务优先贪婪方法(TPG)一种具有两种优化方法的博弈论方法(

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值