ICDE2019论文简析:空间众包中的协同感知任务分配-Cooperation-Aware Task Assignment in Spatial Crowdsourcing
1.问题:
- 作者提出了一个 “具有合作意识的空间众包”概念(CA-SC);
因为大部分空间任务会受到时间限制(ps:在一栋建筑物中收集WI-FI信号的强度),并且需要许多workers合作去完成(ps:去附近多个地方发放传单),当workers被分配到这类任务时他们需要相互合作沟通,所以workers间的合作质量的好坏对于空间众包任务完成的结果十分重要。 - 证明CA-SC问题为NP-hard问题;
2.现状:
- 作者提出的CA-SC问题是基于批处理的SAT模式,现有SAT下的研究没有关注于最大化总体合作得分,例如关注最大化服务器的已分配任务数、最大化分配的可靠度和多样性得分、最大化worker的接受率或者最大化worker能在截止日期前到达目的地实现的任务的总分配数。
- 同时,workers的质量评价/收益也会受到合作质量的影响,良好的任务合作质量可以使workers、requesters and platform都受益,然而现有关于空间众包的研究中没有考虑workers的合作关系。
3.贡献:
CA-SC的目的是将具有合作意识的移动workers更好的分配给空间任务,使得任务整体合作质量得分最大化。作者通过基于批处理的任务分配过程来处理CA-SC问题,提出了**任务优先贪婪方法(TPG)和一种具有两种优化方法的博弈论方法(