- 博客(44)
- 收藏
- 关注
原创 SIGIR25-去偏(短文)|公平采样的无偏协同过滤
使用反事实数据在模型优化的过程中,产生与原始样本方向相反的、对流行度因子(即倾向性因子 θ)的更新,从而抵消原本数据的流行度偏差
2025-06-09 15:26:43
904
原创 神经符号集成的推荐系统 两篇论文
基于AMIE+ 和 AMIE 3的策略,使用规则挖掘器 (RULE MINER)模块从知识图谱中挖掘一阶逻辑规则(FOL rules),以获取背景知识。逻辑规则使用t-范数模糊逻辑 (t-norm fuzzy logics)来递归计算的。使用现有方法得到所有FOL,然后为这些已有的原子公式(三元组)计算其软真值(TransE的评分函数。这个软真值反映了该三元组在当前嵌入表示下的可信度或成立程度,然后,对于从规则挖掘器得到的复杂FOL规则。
2025-06-05 15:55:23
757
原创 SIGIR25-因果推荐|从因果视角重新思考序列推荐
CSRec通过 GPT 构造合成干预响应数据,建立因果展开结构,使用do操作,增强因果效应,SIGIR25。
2025-05-29 15:20:15
967
原创 SIGIR25-推荐论文整理
上,例如学习用户在不同模态下的多方面偏好(如MELON),以及设计新颖的复合图卷积网络结构并结合双阶段融合策略(如COHESION)以增强模态间的协同。同时,研究热点也集中在。bias:图解耦去偏应用于POI推荐,探索用户、数据和推荐系统反馈回路中源偏见的放大机制,以及在LLM推荐中进行双重去偏。(例如LLM被用于增强双曲空间图推荐、辅助知识图谱的理解、以及实现图上的提示学习,常结合由粗到精的框架),以及对。来进一步提升推荐性能,共同推动图推荐技术向更深层次的理解、更强的表征能力及更广泛的应用领域迈进。
2025-05-21 19:45:03
894
2
原创 多行为推荐综述
MBR利用多种用户行为,采用多任务学习来静态预测某一目标行为的偏好或发生概率,MBSR考虑了行为发生的时间顺序,预测用户下一步要发生目标行为的项目。
2025-03-26 20:18:48
997
1
原创 WWW23-多行为推荐|多任务强化学习
MTRL4Rec采用多任务学习方法,将每种行为独立的数据存储。那么在选择最优动作时,在多个行为序列里通过计算Q值来选取物品,但不同任务也有共性,任务路由网络自适应地决定哪些行为可以共享,如果加购和购买具有类似的行为模式,TRN 会为它们分配相似的 MoUs,使得它们共享特征。。
2025-03-07 19:21:38
958
原创 DASFAA24-因果推荐|反事实去偏的多行为推荐
C-MBR和C-MBR¬Lstb在两个数据集上的表现差异表明,在我们提出的稳定排序下,明确强制不同行为的购买倾向是有效的。最后,C-MBR - Lstb, Lcf排除Lcf和Lstb,仅依赖BPR损失的训练,导致IJCAI和淘宝数据集的性能下降,这说明将反事实推理与稳定排序约束相结合具有有益的协同效应。2:采用反事实推理,通过对用户行为进行最小干预(在区间 [−δ,0]内服从均匀分布)构造反事实样本,探索“假如用户行为发生变化,推荐结果会如何”的潜在影响,从而提升模型的去偏能力和泛化性能。
2025-03-05 23:57:04
857
原创 WSDM24-因果推荐|因果去偏的可解释推荐系统
结合了可解释推荐系统的特点,引入模型生成的解释作为中介变量,为后续的前门调整提供基础。这段就不说了,用户项目集合以及交互:预测函数用于估计用户对物品的偏好,然而在可解释推荐系统(ERS)中,不仅要生成推荐,还要提供解释:首先是候选解释集合,包含所有可能的解释维度(例如电影推荐系统中的“剧情”“演员”等)以及解释向量,表示推荐物品 i 时,生成的解释概率分布。ERS流程:1 基于用户和物品计算匹配表示m;2基于m使用解释生成模型生成解释;3基于 m和解释计算最终推荐分数。
2025-02-28 23:34:37
1035
原创 SIGIR24-多行为|基于行为模式挖掘的多行为推荐
通过行为模式计算、特征生成、贝叶斯推理评分计算,实现了 多行为推荐 的目标。它结合了用户与物品的交互信息,通过 行为模式路径 和 特征矩阵 的加权计算,为用户生成准确的推荐。
2025-02-06 23:35:00
1089
原创 多行为级联24|多行为推荐的超图增强级联图卷积网络
针对每个行为使用lightgcn,并生成超图,以级联的方式进行编码。在对比学习部分分为行为间和行为内,行为间有两个对比损失,分别是全局图和单个行为图,以及单个行为图和超图。行为内是超图和单个行为图,最后聚合的时候使用了注意力。
2024-12-23 23:13:46
1225
原创 多行为推荐WSDM24|多行为序列推荐的全局异构图和目标兴趣去噪
融合全局与局部图卷积,结合目标行为掩码与兴趣聚合机制,有效捕捉多行为特征并提升推荐性能。
2024-12-11 15:01:38
1406
原创 因果推荐CIKM24 | 通过偏好感知因果干预和反事实数据增强来提升序列推荐
使用因果感知网络来估算用户不同偏好类型(全局长期、局部长期、短期偏好)对推荐结果的因果效应,并使用了反事实数据增强。
2024-12-10 17:40:56
1677
原创 多行为推荐-KBS 24|基于HyperGRU对比网络的短视频推荐多行为序列建模
提出了一种新的HyperGRU对比网络来模拟短视频推荐的多行为序列。超节点+HyperGRU+对比学习
2024-12-05 21:24:45
1095
原创 可解释推荐-TKDE 24|反事实可解释推荐的强化路径推理
针对协作知识图谱,提升可解释性。帖子的总结部分,会比较针对可解释性和上一篇公平性的同异。
2024-12-04 18:03:28
1117
原创 CIKM23|基于会话推荐的因果关系引导图学习
通过使用因果关系的后门调整,生成一个捕获项目之间因果关系的精炼因果会话图。然后CGSR对提取的图执行高阶聚合,结合来自各种边缘类型的信息,以估计用户的会话偏好。
2024-11-29 19:10:06
808
原创 TOIS24|推荐公平性的反事实解释
模型流程:HIN 嵌入生成使用异构信息网络提取用户嵌入 hu、物品嵌入 hv、属性嵌入 ei,统一表示用户、物品及其属性的多样化关系,为后续的强化学习和反事实解释生成提供输入。强化学习框架利用强化学习找到最小的属性修改集合 V^*,优化推荐结果的公平性。状态表示:通过 GRU提取用户推荐历史的序列信息,结合当前推荐列表嵌入生成状态 st。动作选择:使用注意力机制筛选与当前状态最相关的属性,剔除无用的属性信息,减少动作空间。
2024-11-16 00:45:13
820
原创 Workshop|大规模序列推荐中负抽样的性能和偏差评估
在大规模推荐系统中,模型需要从数以百万或数十亿计的候选项目中筛选出用户可能感兴趣的项目。推荐模型在训练过程中通过正样本(用户已互动的项目)和负样本(用户未互动的项目)之间的对比来学习用户的偏好。然而,由于候选项目数量庞大,使用全部未互动项目作为负样本会导致计算成本过高。因此,负采样技术被广泛应用,目的是从大量未互动项目中选择少量的负样本,以平衡训练效果和计算效率。传统的随机负采样方法尽管简便,但往往强化了流行度偏差,即使模型在热门项目上表现更佳,却难以推荐长尾项目。
2024-11-01 21:19:00
1082
原创 因果推荐-代码阅读|分布外推荐的因果扩散图表示学习
代码:https://github.com/user683/CausalDiffRec.关键词:图神经网络,分布外数据,不变学习,扩散模型:模型的训练;评估;evaluate;input_data;preprocess:数据读取预处理等工作;中包括了:diffusion和DNN(扩散模型的前向和反向 作者这论文里明确说了借鉴Diffrec,这就是diffrec扩散模型的代码);environment_inference:环境推断模块的实现,用于估计和生成因果变量 zcausal;
2024-08-16 18:34:01
1108
原创 因果推荐|分布外推荐的因果扩散图表示学习
通过构建结构因果模型(SCM),并结合因果推断技术,消除环境混淆因素对模型泛化能力的负面影响,从而提升推荐系统在不同分布数据下的性能。
2024-08-06 18:34:36
2267
原创 因果推荐|利用推荐中流行度偏差的因果干预
这篇论文提出了去混淆和调整人气偏差(Popularity-bias Deconfounding and Adjusting, PDA)的框架,通过因果推断技术来解决推荐系统中的人气偏差问题。
2024-07-31 21:04:35
1469
原创 TORS 2023-去混淆因果协同过滤
通过前门调整模型,条件偏好和曝光概率结合起来,有效地消除未观察到的混淆因素的影响,从而更准确地估计用户对物品的真实偏好。
2024-07-24 15:47:52
1228
原创 因果推荐|基于因果蒸馏的推荐系统性能异质性缓解方法
这篇论文创新性地提出了因果多教师蒸馏(CausalD)框架,通过前门调整技术和多教师知识蒸馏来解决推荐系统中的性能异质性问题。与传统方法相比,该框架利用多个异质教师模型来模拟中介变量的分布,从而准确估计因果效应,并将其蒸馏到一个学生模型中,以提高推荐性能和公平性。
2024-07-18 16:47:06
1364
1
原创 因果推荐|因果干预在多行为推荐中的公平性研究
研究了多行为推荐中的流行度偏差及其导致的不公平现象。通过构建因果图和利用因果干预技术,提出了一个多行为去偏框架来缓解由流行度偏差引起的不公平。在模型训练过程中考虑流行度和质量的双重影响,通过后门调整和因果干预,在推理阶段有效去除流行度的负面影响。
2024-07-12 23:16:35
1220
1
原创 因果推荐|用于序列推荐的反事实用户序列合成 SIGIR 2021
因果推荐:通过反事实数据建模和对比学习来增强推荐系统鲁棒性的方法:通过识别可有可无/不可或缺的概念(分为了项目级和兴趣级),并在序列中针对可有可无的概念使用反事实数据进行替换,并设计了两种对比学习策略,解决了噪声和数据稀疏性问题,还显著提升了用户表示的准确性和推荐系统的整体性能。
2024-07-05 16:03:01
1153
1
原创 推荐系统代码阅读:ICDE 2023 IMSR 基于增量学习的多兴趣序列推荐
代码:https://github.com/Scofield666/MBSSLhttps://github.com/Cloudcatcher888/IMSRhttps://github.com/Scofield666/MBSSL论文:https://cloudcatcher888.github.io/files/icde.pdf模型图:作者是在17号的时候上传了代码,但是代码还是有一些不全的地方。我将从他放出来的两个文件,model和IMSR里进行我理解的代码阅读。
2023-09-19 20:47:29
693
原创 推荐系统论文阅读总结:ICDE 2023 IMSR 基于增量学习的多兴趣序列推荐
用户交互序列的长度不断增加,用户可能会从新的交互中产生新的兴趣,因此需要不断更新甚至扩展模型以捕获新的用户兴趣。我们将这个问题称为增量多利益顺序推荐,在现有文献中尚未得到很好的研究。本文提出了一种有效的多兴趣序列推荐增量学习框架——IMSR,该框架在传统的微调策略基础上增加了现有兴趣保留器(EIR)、新兴趣检测器(NID)和基于投影的兴趣修剪器(PIT),以自适应扩展模型以适应用户的新兴趣,并防止其忘记用户的现有兴趣。
2023-09-19 10:41:54
1381
2
原创 推荐系统论文阅读总结:ICLR 2023 LightGCL 简单且高效的图对比学习推荐系统
图神经网络(GNN)是基于图的推荐系统的一种强大的学习方法。近年来,结合对比学习的gnn在推荐数据增强方案方面表现出了优异的性能,其目标是处理高度稀疏的数据。尽管它们取得了成功,但大多数现有的图对比学习方法要么在用户-项目交互图上执行随机增强(例如,节点/边缘扰动),要么依赖于基于启发式的增强技术(例如,用户聚类)来生成对比视图。我们认为这些方法不能很好地保留固有的语义结构,并且容易受到噪声干扰的影响。在本文中,我们提出了一个简单而有效的图对比学习范式LightGCL,它减轻了这些问题,损害了基于cl的推荐
2023-07-29 17:00:10
1370
1
原创 推荐系统论文阅读总结:KDD 2023 Adaptive Disentangled Transformer for SequentialRecommendation(自适应解纠缠)
KDD2023 顺序推荐旨在通过对顺序行为建模来挖掘具有时间意识的用户兴趣。Transformer作为一种处理顺序输入数据的有效体系结构,在获取顺序关系进行推荐方面显示出其优势。然而,现有的Transformer体系结构缺乏针对分层解纠缠的显式正则化,因此无法在推荐中利用解纠缠表示,从而导致性能欠佳。本文研究了变压器结构的分层解纠缠问题,提出了自适应解纠缠变压器(ADT)框架,该框架能够自适应地确定不同层内注意头的最优解纠缠程度。具体而言,我们建议通过对注意头的相互信息估计来要求独立性约束,并使用辅助目标来
2023-07-12 22:06:16
1575
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人