Description
给你一个n个点,m条边的无向图,每个点有一个非负的权值ci,现在你需要选择一些点,使得每一个点都满足:
如果这个点没有被选择,则与它有边相连的所有点都必须被选择。
问:满足上述条件的点集中,所有选择的点的权值和最小是多少?
QYQ很快就解决了这个问题,但是他已经回到了左下角……没有留下答案,现在只好请你来解决这个问题啦!
Input&Output
从文件graph.in中输入数据。
输入的第一行包含两个整数n,m
输入的第二行包含n个整数,其中第i个整数代表ci
输入的第三行到第m+2行,每行包含两个整数u,v,代表点u和点v之间有一条边
输出到文件graph.out中。
输出的第一行包含一个整数,代表最小的权值和
Example
input
3 1
1 2 3
3 1
output
1
样例说明:
只选择1号点,满足题意
Data
对于20% 的数据:n<=10
对于40%的数据:n<=20
对于100%的数据:1<=n<=50, 1<=m<=500, 0<=c<=1000
图中可能会有重边,自环。
点的编号为1—n。
Solution
爆搜!!!
加剪枝
能过!!!
直接搜索就好了,当然不要 O(2^n)那种,每次搜索的时候如果这
个点不选,就直接把与它相连的所有点选上,搜索的时候加入一些剪
枝,比如如果现在的结果已经比现在的最佳答案大了就直接不搜了
上代码
调的我想shi
注意队列指针不能用tmp等类型,最好用q[0]存
听我一句劝
WA30和AC100就这个差别
复制粘贴?不存在的
请手打读入优化
#include<cstdio>
#include<cstring>
using namespace std;
int n,m,v[110],cnt,tmp=0,ans=1<<30,edge[110][11000];
bool vis[1100];
void add(int x,int y){edge[x][++edge[x][0]]=y;}
void dfs(int curr,int val)
{
if(val>=ans)return;
if(curr>n){ans=val;return;}
if(vis[curr]==0)
{
int sum=0,q[1100];//memset(q,0,sizeof(q));
q[0]=0;
for(int i=1;i<=edge[curr][0];i++)
{
if(!vis[edge[curr][i]])
{
vis[edge[curr][i]]=true;
sum+=v[edge[curr][i]];
q[++q[0]]=edge[curr][i];
}
}
dfs(curr+1,val+sum);
for(int i=1;i<=q[0];i++)vis[q[i]]=false;
vis[curr]=true;
dfs(curr+1,val+v[curr]);
vis[curr]=0;
}
else
dfs(curr+1,val);
}
int main()
{
freopen("graph.in","r",stdin);
freopen("graph.out","w",stdout);
n=read(),m=read();
for(int i=1;i<=n;i++)v[i]=read();//,vis[i]++;
for(int i=1;i<=m;i++)
{
int x=read(),y=read();
add(x,y);add(y,x);
}
dfs(1,0);
printf("%d",ans);
// fclose(stdin);fclose(stdout);
return 0;
}