【学习笔记】同余和费马小定理

有关同余

定义

1.如果正整数 a a a b b b m m m取余相同,那么我们称 a a a b b b m o d mod mod m m m同余,记作 a ≡ b ( m o d   m ) a\equiv b\left ( mod \: m\right ) ab(modm)

2.完全剩余系:通俗的理解就是 m o d mod mod m m m可能的所有结果的集合

同余的性质

1.自反性 a ≡ a ( m o d   m ) a \equiv a\left ( mod \: m\right) aa(modm)貌似没有什么卵用

2.对称性:若 a ≡ b ( m o d   m ) a\equiv b\left ( mod \: m\right ) ab(modm),那么有 b ≡ a ( m o d   m ) b \equiv a\left (mod \: m \right) ba(modm)

3.传递性:若 a ≡ b ( m o d   m ) a\equiv b\left ( mod \: m\right ) ab(modm) b ≡ c ( m o d   m ) b\equiv c\left ( mod \: m\right) bc(modm),那么有 a ≡ c ( m o d   m ) a\equiv c\left ( mod \: m\right) ac(modm)

4.同加性:若 a ≡ b ( m o d   m ) a\equiv b\left ( mod \: m\right ) ab(modm),那么有 a + c ≡ b + c ( m o d   m ) a+c\equiv b+c\left ( mod \: m\right) a+cb+c(modm)

5.同乘性:若 a ≡ b ( m o d   m ) a\equiv b\left ( mod \: m\right ) ab(modm),那么有$ c\equiv bc\left ( mod : m\right) , 其 中 ,其中 c\in Z$

6.同幂性:若 a ≡ b ( m o d   m ) a\equiv b\left ( mod \: m\right ) ab(modm),那么有 a c ≡ b c ( m o d   m ) a^c\equiv b^c\left ( mod \: m\right) acbc(modm)

7.若 a   m o d   p = x a \: mod \: p=x amodp=x, a   m o d   q = x a\:mod\:q=x amodq=x, g c d ( p , q ) = 1 gcd(p,q)=1 gcd(p,q)=1,那么有 a   m o d   ( p ∗ q ) = x a\:mod\:(p*q)=x amod(pq)=x

那前6条很好证明,可能第七条就有疑问了

在这里我简单小证一下

∵   a   m o d   p = 0   ,   a   m o d   q = 0 \because\:a\:mod\:p=0\:,\:a\:mod\:q=0 amodp=0,amodq=0
∴   a = s p + x , a = s q + x \therefore\:a=sp+x,a=sq+x a=sp+x,a=sq+x
∴ s p = t q \therefore sp=tq sp=tq
移项得
s = t ∗ q p s=\frac{t*q}{p} s=ptq
∵ t , p , q ∈ Z \because t,p,q \in Z t,p,qZ

r = t p r=\frac{t}{p} r=pt,则
s = r q , a = r p q + x s=rq,a=rpq+x s=rq,a=rpq+x
方程两边同 m o d   p q mod \: pq modpq,得
a   m o d   ( p q ) = x a\: mod \:(pq)=x amod(pq)=x
证毕


费马小定理

1.摆式子
a p − 1 ≡ 1 ( m o d   p ) a^{p-1} \equiv 1\left ( mod \: p\right ) ap11(modp)

2.前置知识/引理

  1. a , b , c ∈ Z a,b,c \in Z a,b,cZ并且 a ≠ b ≠ c a\neq b \neq c a̸=b̸=c,有 ( m , c ) = 1 (m,c)=1 (m,c)=1,当且仅当 a ⋅ c ≡ b ⋅ c ( m o d   m ) a\cdot c \equiv b \cdot c \left ( mod \: m \right) acbc(modm)时,有 a ≡ b ( m o d   m ) a \equiv b (mod\:m) ab(modm)。证明略如下
    ∵ a ⋅ c ≡ b ⋅ c ( m o d   m ) \because a\cdot c \equiv b \cdot c \left ( mod \: m \right) acbc(modm)
    ∴ a c − b c ≡ 0 ( m o d   m ) \therefore ac-bc \equiv 0(mod \:m) acbc0(modm)
    ∴ ( a − b ) ⋅ c ≡ 0 ( m o d   m ) \therefore (a-b)\cdot c \equiv 0(mod \: m) (ab)c0(modm)
    ∵ ( m , c ) = 1   \because (m,c)=1 \: (m,c)=1
    约去 c c c
    a − b ≡ 0 ( m o d   m ) a-b \equiv 0(mod \: m) ab0(modm)
    a ≡ b ( m o d   m ) a \equiv b(mod \: m) ab(modm)
    证毕

  2. ( m , c ) = 1 (m,c)=1 (m,c)=1并且 m , c ∈ Z m,c \in Z m,cZ,设 A = A= A={ a [ 0 ] , . . . , a [ m − 1 ] a[0],...,a[m-1] a[0],...,a[m1]}为 m o d   m mod \: m modm的完全剩余系,那么 B = B= B={ b ⋅ a [ 0 ] , . . . , b ⋅ a [ m − 1 ] b\cdot a[0],...,b\cdot a[m-1] ba[0],...,ba[m1]}也是 m o d   m mod \: m modm的完全剩余系,证明略如下

证法1:特殊值法(非严谨)

m = 13 , b = 3 m=13,b=3 m=13,b=3

那么我们构建 A = A= A={ 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 0,1,2,3,4,5,6,7,8,9,10,11,12 0,1,2,3,4,5,6,7,8,9,10,11,12}

A A A乘上 b b b得到 B = B= B={ 0 , 3 , 6 , 9 , 12 , 15 , 18 , 21 , 24 , 27 , 30 , 33 , 36 0,3,6,9,12,15,18,21,24,27,30,33,36 0,3,6,9,12,15,18,21,24,27,30,33,36}

然后将 B   m o d   m B\: mod \: m Bmodm后,得到 B B B={ 0 , 3 , 6 , 9 , 12 , 2 , 5 , 8 , 11 , 1 , 4 , 7 , 10 0,3,6,9,12,2,5,8,11,1,4,7,10 0,3,6,9,12,2,5,8,11,1,4,7,10}

排序得 B = B= B={ 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 0,1,2,3,4,5,6,7,8,9,10,11,12 0,1,2,3,4,5,6,7,8,9,10,11,12}

证毕

证法2:严谨的证法

FAQ:对于 B B B,是否存在两个元素同余m呢

假设 b ⋅ a [ i ] ≡ b ⋅ a [ j ] ( m o d   m ) b\cdot a[i] \equiv b\cdot a[j](mod \: m) ba[i]ba[j](modm),那么有引理一可知 a [ i ] ≡ a [ j ] ( m o d   m ) a[i] \equiv a[j](mod \: m) a[i]a[j](modm)

应为我们的A是严格的完全剩余系,所以上式不成立,那么固然 b ⋅ a [ i ] ̸ ≡ b ⋅ a [ j ] ( m o d   m ) b\cdot a[i] \not\equiv b\cdot a[j](mod \: m) ba[i]̸ba[j](modm)

证毕

3.证明 a p − 1 ≡ 1 ( m o d   p ) a^{p-1} \equiv 1\left ( mod \: p\right ) ap11(modp)(并不严谨,感性理解)

首先构建 P = P= P={ 1 , . . . , p − 1 1,...,p-1 1,...,p1}为素数p的完全剩余系

(这里省略0,原因见后)

所以由引理2可知 A = A= A={ a , . . . , a ⋅ ( p − 1 ) a,...,a\cdot (p-1) a,...,a(p1)}

因为完全剩余系的元素 m o d   p mod\: p modp都严格相同,那么有
1 ∗ . . . ∗ ( p − 1 ) ≡ a ∗ . . . ∗ a ⋅ ( p − 1 )   ( m o d   p ) 1*...*(p-1)\equiv a*...*a\cdot (p-1)\: (mod \: p) 1...(p1)a...a(p1)(modp)

显然 ( p − 1 ) ! ≡ ( p − 1 ) ! ⋅ a p − 1 (p-1)!\equiv (p-1)!\cdot a^{p-1} (p1)!(p1)!ap1

因为p是素数,所以 ( ( p − 1 ) ! , p ) = 1 ((p-1)!,p)=1 ((p1)!,p)=1,由引理1可知同余式两边同消得
a p − 1 ≡ 1 ( m o d   p ) a^{p-1}\equiv 1(mod \: p) ap11(modp)

证毕

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值