Cnm=Cn−1m−1+Cnm−1Cmn=Cm−1n−1+Cm−1n
杨辉三角,只不过需要注意C1m=mCm1=m
矩阵前缀和即可
注意%完后那些符合要求的数值上为0,但是全局变量初始化全为0,为了避免麻烦用另一个数组把那些算出来为0的全标记为1,那些不在计算范围之内的还有不合要求的都设为0,然后求这个数组的矩阵前缀和,注意数组不要访问越界。。。
一开始我循环都访问到2005了答案就错了
#include <cstdio>
#include <iostream>
#include <algorithm>
using namespace std;
#define debug(x) cout<<#x<<"="<<x<<endl;
int t,n,m,k,ans,san[2005][2005],f[2005][2005];
int main() {
cin >> t >> k;
san[1][0] = 1;
san[1][1] = 1;
for(int i=2; i<=2002; i++){
san[i][0] = 1;
for(int j=1; j <= i; j++) {
san[i][j] = (san[i-1][j] + san[i-1][j-1]) % k;
if(!san[i][j]) f[i][j] = 1;
}
}
for(int i=1; i<=2002; i++) {
for(int j=1; j<=2002; j++) {
f[i][j] = f[i][j] + f[i-1][j] + f[i][j-1] - f[i-1][j-1];
}
}
for(int o=1; o<=t; o++) {
cin >> n >> m;
cout << f[n][m] << endl;
}
return 0;
}

本文介绍了一种利用杨辉三角特性结合矩阵前缀和的方法来解决特定数学问题的算法实现。通过预计算杨辉三角并进行模运算,避免了直接计算组合数时可能遇到的大数问题。此外,通过构建辅助数组并使用矩阵前缀和技术快速定位符合条件的元素。
786

被折叠的 条评论
为什么被折叠?



