# 线性筛质数

## 时间复杂度

$O(n)$

## 模板

#include <iostream>
using namespace std;
#include <cstring>

const int MAX = 1000000;

int pos;  // the amount of prime
int check[MAX];  // 0 to prime, 1 to composite
int prime[MAX];  // the prime numbers

/**
* @other: 0 and 1 are not prime numbers
*/
void PRIME() {
memset(check, 0, sizeof(check));
pos = 0;
for (int i = 2; i < MAX; ++i) {
if (check[i] == 0) prime[pos++] = i;
for (int j = 0; j < pos; ++j) {
if (prime[j]*i > MAX) break;  // check the numbers in the range
check[prime[j]*i] = 1;
if (i % prime[j] == 0) break;  // to avoid checking repeatly
}
}
}


## 模板1.1

#include "PRIME.h"

int count[MAX];  // the amount of prime numbers

/**
* @param n: number N
*/
void EXT1(int n) {
memset(count, 0, sizeof(count));
for (int i = 0; n > 1; ++i) {
while (n % prime[i] == 0) ++count[i];
}
}


## 模板1.2

#include "EXT1.h"

int amount;  // the amount of prime factors
int factor[MAX];  // the prime factors

/**
* @param n: number N
*/
void EXT2(int n) {
amount = 0;
for (int i = 0; prime[i]*prime[i] <= n; ++i) {
while (n % prime[i] == 0) {
factor[amount++] = prime[i];
n /= prime[i];
}
}
if (n > 1) factor[amount++] = n;
}


## 模板2

#include "EXT2.h"

/**
* @param n: number N
* @return: the sum of factors
*/
int EXT3(int n) {
int ans = 1;  // the sum of factors
for (int i = 0; i < pos; ++i) {
int tmp = 1;  // the power of prime[i]
int sum = 1;  // the sum of powers
for (int j = 0; j < count[i]; ++j) {
tmp *= prime[i];
sum += tmp;
}
ans *= sum;
}
return ans;
}