leetcode-4.寻找两个正序数组的中位数

给定两个大小分别为 m 和 n 的正序(从小到大)数组 nums1 和 nums2。请你找出并返回这两个正序数组的 中位数 。

算法的时间复杂度应该为 O(log (m+n)) 。

示例 1:

输入:nums1 = [1,3], nums2 = [2]
输出:2.00000
解释:合并数组 = [1,2,3] ,中位数 2
示例 2:

输入:nums1 = [1,2], nums2 = [3,4]
输出:2.50000
解释:合并数组 = [1,2,3,4] ,中位数 (2 + 3) / 2 = 2.5

提示:

nums1.length == m
nums2.length == n
0 <= m <= 1000
0 <= n <= 1000
1 <= m + n <= 2000
-106 <= nums1[i], nums2[i] <= 106

来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/median-of-two-sorted-arrays

#include<iostream>
#include<vector>
using namespace std;

/*思路:最容易想到的就是新开一个数组把两个数组合并重新排序,然后取中位数。时空复杂度都为O(m+n)。改进之后用双指针从两个数组依次读数找中位数,可以不用开存储空间。O(log(m+n))复杂度应该会涉及2分查找。*/
class Solution {
public:
    double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
        int _len1 = (int)nums1.size(), _len2 = (int)nums2.size();
        int _len = _len1 + _len2;
        int a1 = 0, a2 = 0;
        if (_len1 == 0)
        {
            if (_len2 % 2 == 1)
                return (double)nums2[_len2 / 2];
            else
                return (double)((nums2[_len2 / 2] + nums2[_len2 / 2 - 1]) / 2.0);
        }
        if (_len2 == 0)
        {
            if (_len1 % 2 == 1)
                return (double)nums1[_len1 / 2];
            else
                return (double)((nums1[_len1 / 2] + nums1[_len1 / 2 - 1]) / 2.0);
        }
        if (_len % 2 == 0)
        {
            a1 = findXth(nums1, nums2, _len / 2, 0, 0);
            a2 = findXth(nums1, nums2, (_len / 2)-1, 0, 0);
            return (a1 + a2) / 2.0;
        }
        else
        {
            a1 = findXth(nums1, nums2, _len / 2, 0, 0);
            return a1;
        }
    }
    int findXth(const vector<int>& nums1, const vector<int>& nums2, int k, int left1, int left2)
    {
        int _index1 = 0, _index2 = 0;
        int _left1 = left1, _right1 = nums1.size() - 1;
        int _left2 = left2, _right2 = nums2.size() - 1;
        if (nums1.size() > nums2.size())
            return findXth(nums2, nums1, k, _left1, _left2);//让nums1数组总是最小
        //nums1中元素都被pass掉了
        if (_left1 > _right1)
        {
            return nums2[_left2 + k];
        }
        if (_left2 > _right2)
            return nums1[_left1 + k];

        if (k == 0)
            return nums1[_left1] <= nums2[_left2] ? nums1[_left1] : nums2[_left2];

        if (k == 1)
        {
            _index1 = _left1;
            _index2 = _left2;
            if (nums1[_index1] <= nums2[_index2])
                _left1++;
            else
                _left2++;
            k -= 1;
            return findXth(nums1, nums2, k, _left1, _left2);
        }
        if (_right1 - _left1 + 1 <= k / 2)
        {
            _index1 = _right1;
            _index2 = _left2;
            if (nums1[_index1] <= nums2[_index2])
                return nums2[_left2 + k - (_right1 - _left1 + 1)];
            else
            {
                _left2 += (k / 2);
                k -= (k / 2);
                return findXth(nums1, nums2, k, _left1, _left2);
            }

        }
        _index1 = _left1 + k / 2 - 1;
        _index2 = _left2 + k / 2 - 1;
        if (nums1[_index1] <= nums2[_index2])
            _left1 += (k / 2);
        else
            _left2 += (k / 2);
        k -= (k / 2);
        return findXth(nums1, nums2, k, _left1, _left2);

    }
};



//test
int main()
{
    vector<int>n1, n2;
    int m1, m2, m3;
    cin >> m1;
    for (int i = 0; i < m1; i++)
    {
        cin>>m2;
        n1.push_back(m2);
    }
    cin >> m3;
    for (int i = 0; i < m3; i++)
    {
        cin >> m2;
        n2.push_back(m2);
    }
    Solution s1;
    printf("%lf", s1.findMedianSortedArrays(n1, n2));
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值