给你四个整数数组 nums1、nums2、nums3 和 nums4 ,数组长度都是 n ,请你计算有多少个元组 (i, j, k, l) 能满足:
0 <= i, j, k, l < n
nums1[i] + nums2[j] + nums3[k] + nums4[l] == 0
示例 1:
输入:nums1 = [1,2], nums2 = [-2,-1], nums3 = [-1,2], nums4 = [0,2]
输出:2
解释:
两个元组如下:
- (0, 0, 0, 1) -> nums1[0] + nums2[0] + nums3[0] + nums4[1] = 1 + (-2) + (-1) + 2 = 0
- (1, 1, 0, 0) -> nums1[1] + nums2[1] + nums3[0] + nums4[0] = 2 + (-1) + (-1) + 0 = 0
示例 2:
输入:nums1 = [0], nums2 = [0], nums3 = [0], nums4 = [0]
输出:1
提示:
n == nums1.length
n == nums2.length
n == nums3.length
n == nums4.length
1 <= n <= 200
-228 <= nums1[i], nums2[i], nums3[i], nums4[i] <= 228
来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/4sum-ii
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
/一开始只想到了O(n3)的方法,后面看了看解答用分组的方式可以把时间复杂度降到O(n2)/
class Solution {
public:
int fourSumCount(vector<int>& nums1, vector<int>& nums2, vector<int>& nums3, vector<int>& nums4) {
int total = 0;
int count = 0;
unordered_map<int,int> myMap;
for (int i = 0; i < nums1.size(); i++)
{
for (int j = 0; j < nums2.size(); j++)
{
total = nums1[i] + nums2[j];
myMap[total]++;
}
}
for (int i = 0; i < nums3.size(); i++)
{
for (int j = 0; j < nums4.size(); j++)
{
total = 0 - (nums3[i] + nums4[j]);
count += myMap[total];
}
}
return count;
}
};